Nicola Tamanini

Personal webpage

Home
Research
CV
Publications
Media Coverage
GWs @ L2IT
Contacts

Publications

Here you can find all my publications and links to their records on the most common publication databases used in the physics research community.

ArXiv       ADS abstract       Inspire       Google scholar       Orcid

Recent preprints

  1. A. Agarwal et al., Blinded Mock Data Challenge for Gravitational-Wave Cosmology-I: Assessing the Robustness of Methods Using Binary Black Holes Mass Spectrum, [arXiv:2412.14244]

  2. M. Colpi et al., LISA Definition Study Report, [arXiv:2402.07571]

  3. A. Mangiagli, C. Caprini, S. Marsat, L. Speri, R. R. Caldwell and N. Tamanini, Massive black hole binaries in LISA: constraining cosmological parameters at high redshifts, [arXiv:2312.04632]

  4. N. Afshordi et al., [LISA Consortium Waveform Working Group], Waveform Modelling for the Laser Interferometer Space Antenna, [arXiv:2311.01300]

Publications in peer-review journals (short author-list / small collaborations)

  1. V. Langen, N. Tamanini, S. Marsat and E. Bortolas, Hierarchical Bayesian inference on an analytical model of the LISA massive black hole binary population, Accepted by Mon. Not. Roy. Astron. Soc. (2024) [arXiv:2409.06527]

  2. C. Liu, D. Laghi and N. Tamanini, Probing modified gravitational-wave propagation with extreme mass-ratio inspirals, Phys. Rev. D 109 (2024) no.6, 063521 [doi:10.1103/PhysRevD.109.063521] [arXiv:2310.12813]

  3. M. Toscani, O. Burke, C. Liu, N. B. Zamel, N. Tamanini and F. Pozzoli, Strongly-Lensed Extreme Mass-ratio Inspirals, Phys. Rev. D 109 (2024) no.6, 063505 [doi:10.1103/PhysRevD.109.063505] [arXiv:2307.06722]

  4. N. Muttoni, D. Laghi, N. Tamanini, S. Marsat and D. Izquierdo-Villalba, Dark siren cosmology with binary black holes in the era of third-generation gravitational wave detectors, Phys. Rev. D 108 (2023) no.4, 043543 [doi:10.1103/PhysRevD.108.043543] [arXiv:2303.10693]

  5. M. Toscani, E. M. Rossi, N. Tamanini and G. Cusin, Lensing of gravitational waves from tidal disruption events, Mon. Not. Roy. Astron. Soc. 523 (2023) no.3, 3863-3873 [doi:10.1093/mnras/stad1633] [arXiv:2301.01804]

  6. J. R. Gair et al., The Hitchhiker’s guide to the galaxy catalog approach for gravitational wave cosmology, Astron. J. 166 (2023) no.1, 22 [doi:10.3847/1538-3881/acca78] [arXiv:2212.08694]

  7. R. Barbieri, S. Savastano, L. Speri, A. Antonelli, L. Sberna, O. Burke, J. R. Gair and N. Tamanini, Constraining the evolution of Newton’s constant with slow inspirals observed from spaceborne gravitational-wave detectors, Phys. Rev. D 107 (2023) no.6, 064073 [doi:10.1103/PhysRevD.107.064073] [arXiv:2207.10674]

  8. A. Mangiagli, C. Caprini, M. Volonteri, S. Marsat, S. Vergani, N. Tamanini and H. Inchauspé, Massive black hole binaries in LISA: multimessenger prospects and electromagnetic counterparts, Phys. Rev. D 106 (2022) no.10, 103017 [doi:10.1103/PhysRevD.106.103017] [arXiv:2207.10678]

  9. L. Sberna et al, Observing GW190521-like binary black holes and their environment with LISA, Phys. Rev. D 106 (2022) no.6, 064056 [doi:10.1103/PhysRevD.106.064056] [arXiv:2205.08550].

  10. M. L. Katz, C. Danielski, N. Karnesis, V. Korol, N. Tamanini, N. J. Cornish and T. B. Littenberg, Bayesian Characterisation of Circumbinary Exoplanets with LISA, Mon. Not. Roy. Astron. Soc. 517 (2022) no.1, 697-711 [doi:10.1093/mnras/stac2555] [arXiv:2205.03461]

  11. M. Corman, A. Ghosh, C. Escamilla-Rivera, M. A. Hendry, S. Marsat and N. Tamanini, Constraining cosmological extra dimensions with gravitational wave standard sirens: from theory to current and future multi-messenger observations, Phys. Rev. D 105 (2022) no.6, 064061 [doi:10.1103/PhysRevD.105.064061] [arXiv:2109.08748]

  12. P. Amaro Seoane et al, The Effect of Mission Duration on LISA Science Objectives, Gen. Rel. Grav. 54 (2022) no.1, 3 [doi:10.1007/s10714-021-02889-x] [arXiv:2107.09665]

  13. D. Laghi, N. Tamanini, W. Del Pozzo, A. Sesana, J. Gair, Gravitational wave cosmology with extreme mass-ratio inspirals, Mon. Not. Roy. Astron. Soc. 508 (2021) no.3, 4512-4531 [doi:10.1093/mnras/stab2741] [arXiv:2102.01708]

  14. G. Cusin and N. Tamanini, Characterisation of lensing selection effects for LISA massive black hole binary mergers, Mon. Not. Roy. Astron. Soc. 504 (2021) no.3, 3610-3618 [doi:10.1093/mnras/stab1130] [arXiv:2011.15109]

  15. L. Speri, N. Tamanini, R. R. Caldwell, J. R. Gair and B. Wang, Testing the Quasar Hubble Diagram with LISA Standard Sirens, Phys. Rev. D 103 (2021) no.8, 083526 [doi:10.1103/PhysRevD.103.083526] [arXiv:2010.09049]

  16. A. Toubiana, L. Sberna, A. Caputo, G. Cusin, S. Marsat, K. Jani, S. Babak, E. Barausse, C. Caprini, P. Pani, Alberto Sesana, Nicola Tamanini, Detectable environmental effects in GW190521-like black-hole binaries with LISA, Phys. Rev. Lett. 126 (2021) no.10, 101105 [doi:10.1103/PhysRevLett.126.101105] [arXiv:2010.06056]

  17. M. A. Sedda et al., The missing link in gravitational-wave astronomy: A summary of discoveries waiting in the decihertz range, Exper. Astron. 51 (2021) no.3, 1427-1440 [doi:10.1007/s10686-021-09713-z]

  18. C. Danielski and N. Tamanini, Will Gravitational Waves Discover the First Extra-Galactic Planetary System?, Received an honorable mention in the Gravity Research Foundation 2020 Awards for Essays on Gravitation, Int. J. Mod. Phys. D 29 (2020) 2043007 [doi:10.1142/S0218271820430075] [arXiv:2007.07010]

  19. E. Barausse, E. Berti, T. Hertog, S. A. Hughes, P. Jetzer, P. Pani, T. P. Sotiriou, N. Tamanini, H. Witek, K. Yagi, N. Yunes et al. Prospects for Fundamental Physics with LISA, Gen. Rel. Grav. 52 (2020) no.8, 81 [doi:10.1007/s10714-020-02691-1] [arXiv:2001.09793]

  20. C. Danielski, V. Korol, N. Tamanini and E. M. Rossi, Circumbinary exoplanets and brown dwarfs with LISA, A&A (2019), 632, A113 [doi:10.1051/0004-6361/201936729] [arXiv:1910.05414]

  21. G. Calcagni, S. Kuroyanagi, S. Marsat, M. Sakellariadou, N. Tamanini and G. Tasinato, Gravitational-wave luminosity distance in quantum gravity, Phys. Lett. B 798 (2019) 135000 [doi:10.1016/j.physletb.2019.135000] [arXiv:1904.00384]

  22. G. Calcagni, S. Kuroyanagi, S. Marsat, M. Sakellariadou, N. Tamanini and G. Tasinato, Quantum gravity and gravitational-wave astronomy, JCAP 10 (2019) 012 [doi:10.1088/1475-7516/2019/10/012] [arXiv:1907.02489]

  23. N. Tamanini, A. Klein, C. Bonvin, E. Barausse and C. Caprini, Peculiar acceleration of stellar-origin black hole binaries: Measurement and biases with LISA, Phys. Rev. D 101 (2020) no.6, 063002 [doi:10.1103/PhysRevD.101.063002] [arXiv:1907.02018]

  24. N. Tamanini and C. Danielski, The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA, Nature Astronomy 3 (2019) no.9, 858-866 [doi:10.1038/s41550-019-0807-y] [arXiv:1812.04330]

  25. E. Belgacem et al. [LISA Cosmology Working Group], Testing modified gravity at cosmological distances with LISA standard sirens, JCAP 1907 (2019) no.07, 024 [doi:10.1088/1475-7516/2019/07/024] [arXiv:1906.01593]

  26. L. Barack et al., Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quant. Grav. 36, no. 14, 143001 (2019) [doi:10.1088/1361-6382/ab0587] [arXiv:1806.05195]

  27. T. Robson, N. J. Cornish, N. Tamanini and S. Toonen, Detecting hierarchical stellar systems with LISA, Phys. Rev. D 98 (2018) no.6, 064012 [doi:10.1103/PhysRevD.98.064012] [arXiv:1806.00500]

  28. S. Bahamonde, C. G. Boehmer, S. Carloni, E. J. Copeland, W. Fang and N. Tamanini, Dynamical systems applied to cosmology: dark energy and modified gravity, Phys. Rept. 775-777 (2018) 1 [doi:10.1016/j.physrep.2018.09.001] [arXiv:1712.03107]

  29. J. Dutta, W. Khyllep, E. N. Saridakis, N. Tamanini and S. Vagnozzi, Cosmological dynamics of mimetic gravity, JCAP 1802 (2018) no.02, 041 [doi:10.1088/1475-7516/2018/02/041] [arXiv:1711.07290]

  30. J. Dutta, W. Khyllep and N. Tamanini, Dark energy with a gradient coupling to the dark matter fluid: cosmological dynamics and structure formation, JCAP 1801 (2018) no.01, 038 [doi:10.1088/1475-7516/2018/01/038] [arXiv:1707.09246]

  31. H. Zonunmawia, W. Khyllep, N. Roy, J. Dutta and N. Tamanini, Extended Phase Space Analysis of Interacting Dark Energy Models in Loop Quantum Cosmology, Phys. Rev. D 96 (2017) no.8, 083527 [doi:10.1103/PhysRevD.96.083527] arXiv:1708.07716]

  32. R. G. Cai, N. Tamanini and T. Yang, Reconstructing the dark sector interaction with LISA, JCAP 1705 (2017) no.05, 031 [doi:10.1088/1475-7516/2017/05/031] [arXiv:1703.07323]

  33. K. Inayoshi, N. Tamanini, C. Caprini and Z. Haiman, Probing stellar binary black hole formation in galactic nuclei via the imprint of their center of mass acceleration on their gravitational wave signal, Phys. Rev. D 96 (2017) no.6, 063014 [doi:10.1103/PhysRevD.96.063014] [arXiv:1702.06529]

  34. J. Dutta, W. Khyllep and N. Tamanini, Scalar-Fluid interacting dark energy: cosmological dynamics beyond the exponential potential, Phys. Rev. D 95 (2017) no.2, 023515 [doi:10.1103/PhysRevD.95.023515] [arXiv:1701.00744]

  35. C. Bonvin, C. Caprini, R. Sturani and N. Tamanini, Effect of matter structure on the gravitational waveform, Phys. Rev. D 95 (2017) no.4, 044029 [doi:10.1103/PhysRevD.95.044029] [arXiv:1609.08093]

  36. C. Caprini and N. Tamanini, Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission, JCAP 1610 (2016) no.10, 006 [doi:10.1088/1475-7516/2016/10/006] [arXiv:1607.08755]

  37. T. Koivisto and N. Tamanini, A note on viability of nonminimally coupled f(R) theory, Gen. Rel. Grav. 48 (2016) no.7, 97 [doi:10.1007/s10714-016-2087-5] [arXiv:1606.04060]

  38. N. Tamanini and M. Wright, Cosmological dynamics of extended chameleons, JCAP 1604 (2016) no.04, 032 [doi:10.1088/1475-7516/2016/04/032] [arXiv:1602.06903]

  39. J. Dutta, W. Khyllep and N. Tamanini, Cosmological dynamics of scalar fields with kinetic corrections: Beyond the exponential potential, Phys. Rev. D 93 (2016) no.6, 063004 [doi:10.1103/PhysRevD.93.063004] [arXiv:1602.06113]

  40. N. Tamanini, C. Caprini, E. Barausse, A. Sesana, A. Klein and A. Petiteau, Science with the space-based interferometer eLISA. III: Probing the expansion of the Universe using gravitational wave standard sirens, JCAP 1604 (2016) no.04, 002 [doi:10.1088/1475-7516/2016/04/002] [arXiv:1601.07112]

  41. P. Brax and N. Tamanini, Extended chameleon models, Phys. Rev. D 93 (2016) no.10, 103502 [doi:10.1103/PhysRevD.93.103502] arXiv:1512.07399]

  42. C. G. Boehmer, N. Tamanini and M. Wright, Einstein static universe in scalar-fluid theories, Phys. Rev. D 92 (2015) no.12, 124067 [doi:10.1103/PhysRevD.92.124067] [arXiv:1510.01477]

  43. T. S. Koivisto, E. N. Saridakis and N. Tamanini, Scalar-Fluid theories: cosmological perturbations and large-scale structure, JCAP 1509 (2015) 09, 047 [doi:10.1088/1475-7516/2015/09/047] [arXiv:1505.07556]

  44. N. Tamanini, Phenomenological models of dark energy interacting with dark matter, Phys. Rev. D 92 (2015) 4, 043524 [doi:10.1103/PhysRevD.92.043524] arXiv:1504.07397

  45. C. G. Boehmer, N. Tamanini and M. Wright, Interacting quintessence from a variational approach. Part II: derivative couplings, Phys. Rev. D 91 (2015) 12, 123003 [doi:10.1103/PhysRevD.91.123003] [arXiv:1502.04030]

  46. C. G. Boehmer, N. Tamanini and M. Wright, Interacting quintessence from a variational approach. Part I: algebraic couplings, Phys. Rev. D 91 (2015) 12, 123002 [doi:10.1103/PhysRevD.91.123002] [arXiv:1501.06540]

  47. C. G. Boehmer, N. Tamanini and M. Wright, On galaxy rotation curves from a continuum mechanics approach to modified gravity, Int. J. Mod. Phys. D 27 (2018) 1850007 [doi:10.1142/S0218271818500074] [arXiv:1403.4110]

  48. N. Tamanini, Dynamics of cosmological scalar fields, Phys. Rev. D 89 (2014) 083521 [doi:10.1103/PhysRevD.89.083521] [arXiv:1401.6339]

  49. N. Tamanini and T. S. Koivisto, Consistency of non-minimally coupled f(R) gravity, Phys. Rev. D 88, 064052 (2013) [doi:10.1103/PhysRevD.88.064052] [arXiv:1308.3401]

  50. N. Tamanini, E. N. Saridakis and T. S. Koivisto, The Cosmology of Interacting Spin-2 Fields, JCAP 1402 (2014) 015 [doi:10.1088/1475-7516/2014/02/015] [arXiv:1307.5984]

  51. C. G. Boehmer, F. S. N. Lobo and N. Tamanini, Einstein static Universe in hybrid metric-Palatini gravity, Phys. Rev. D 88, 104019 (2013) [doi:10.1103/PhysRevD.88.104019] [arXiv:1305.0025]

  52. C. G. Boehmer and N. Tamanini, Rotational elasticity and coupling to linear elasticity, Mathematics and Mechanics of Solids (2015) 20 959-974 [doi:10.1177/1081286513511093] [arXiv:1008.4005]

  53. T. S. Koivisto and N. Tamanini, Ghosts in pure and hybrid formalisms of gravity theories: a unified analysis, Phys. Rev. D 87, 104030 (2013) [doi:10.1103/PhysRevD.87.104030] [arXiv:1304.3607]

  54. N. Tamanini and C. G. Boehmer, Generalized hybrid metric-Palatini gravity, Phys. Rev. D 87, 084031 (2013) [doi:10.1103/PhysRevD.87.084031] [arXiv:1302.2355]

  55. C. G. Boehmer and N. Tamanini, A New Approach to Modifying Theories of Gravity, Found. Phys. 43 (2013) 1478 [doi:10.1007/s10701-013-9756-y] [arXiv:1301.5471]

  56. N. Tamanini, Variational approach to gravitational theories with two independent connections, Phys. Rev. D 86, 024004 (2012) [doi:10.1103/PhysRevD.86.024004] [arXiv:1205.2511]

  57. N. Tamanini and C. G. Boehmer, Good and bad tetrads in f(T) gravity, Phys. Rev. D 86, 044009 (2012) [doi:10.1103/PhysRevD.86.044009] [arXiv:1204.4593]

  58. C. G. Boehmer, A. Mussa and N. Tamanini, Existence of relativistic stars in f(T) gravity, Class. Quant. Grav. 28, 245020 (2011) [doi:10.1088/0264-9381/28/24/245020] [arXiv:1107.4455]

  59. N. Tamanini and C. R. Contaldi, Inflationary Perturbations in Palatini Generalised Gravity, Phys. Rev. D 83, 044018 (2011) [doi:10.1103/PhysRevD.83.044018] [arXiv:1010.0689]

Conference proceedings & similar (published/peer-reviewed)

  1. A. Mangiagli, C. Caprini, M. Volonteri, S. Marsat, S. Vergani, N. Tamanini and L. Speri, Cosmology with massive black hole binary mergers in the LISA era, PoS ICHEP2022 (2022), 125 [doi:10.22323/1.414.0125]

  2. J. Bayle et al., Workshop on Gravitational-Wave Astrophysics for Early Career Scientists, Nature Astron. 6 (2022), 304 [10.1038/s41550-022-01629-8]

  3. N. Tamanini, Late time cosmology with LISA: probing the cosmic expansion with massive black hole binary mergers as standard sirens, J. Phys. Conf. Ser. 840 (2017) no.1, 012029 [doi:10.1088/1742-6596/840/1/012029] [arXiv:1612.02634]

  4. N. Tamanini, The Biconnection Variational Principle for General Relativity, Proceedings of the 13th Marcell Grossmann Meeting, [doi:10.1142/9789814623995_0313] [arXiv:1304.0675]

  5. N. Tamanini and C. G. Boehmer, Definition of Good Tetrads for f(T) Gravity, Proceedings of the 13th Marcell Grossmann Meeting, [doi:10.1142/9789814623995_0148] [arXiv:1304.0672]

LVK collaboration papers (non-negligible personal contribution)

  1. R. Abbot et al. [LIGO-Virgo-Kagra Collaboration], Constraints on the cosmic expansion history from GWTC–3, Astrophys. J. 949 (2023) no.2, 76 [doi:10.3847/1538-4357/ac74bb] [arXiv:2111.03604]

  2. B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Tests of General Relativity with GW170817, Phys. Rev. Lett. 123 (2019) no.1, 011102 [doi:10.1103/PhysRevLett.123.011102] [arXiv:1811.00364]

  3. M. Fishbach et al. [LIGO Scientific and Virgo Collaborations], A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart, Astrophys. J. 871 (2019) L13 [doi:10.3847/2041-8213/aaf96e] [arXiv:1807.05667]

LVK collaboration paper (negligible personal contribution)

  1. A. G. Abac et al. [LIGO Scientific, VIRGO and KAGRA], Search for gravitational waves emitted from SN 2023ixf, [arXiv:2410.16565]

  2. A. G. Abac et al. [LIGO Scientific, VIRGO and KAGRA], A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154, [arXiv:2410.09151]

  3. G. Raman et al., [LIGO Scientific, VIRGO and KAGRA], Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run, [arXiv:2407.12867]

  4. A. G. Abac et al. [KAGRA, LIGO Scientific and VIRGO], Ultralight vector dark matter search using data from the KAGRA O3GK run, Phys. Rev. D 110 (2024) no.4, 042001 [doi:10.1103/PhysRevD.110.042001] [arXiv:2403.03004]

  5. A. G. Abac et al. [LIGO Scientific, Virgo and KAGRA], Observation of Gravitational Waves from the Coalescence of a 2.5\textendash{}4.5 M ${⊙}$ Compact Object and a Neutron Star_, Astrophys. J. Lett. 970 (2024) no.2, L34 [doi:10.3847/2041-8213/ad5beb] [arXiv:2404.04248]

  6. A. G. Abac et al. [LIGO Scientific, VIRGO and KAGRA], Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo, Astrophys. J. \textbf{970} (2024) no.2, 191 [doi:10.3847/1538-4357/ad3e83] [arXiv:2308.03822]

  7. R. Abbott et al. [LIGO Scientific, KAGRA and VIRGO], Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network, Astrophys. J. 970 (2024) no.2, 191 [doi:10.3847/1538-4357/ad3e83] [arXiv:2304.08393]

  8. F.Acerneseet al. [VIRGO], Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector, Phys. Rev. Lett. \textbf{131} (2023) no.4, 041403 [doi:10.1103/PhysRevLett.131.041403]

  9. F. Acernese et al. [VIRGO], Advanced Virgo Plus: Future Perspectives, [doi:10.1088/1742-6596/2429/1/012040]

  10. F. Acernese et al. [VIRGO], The Advanced Virgo+ status, [doi:10.1088/1742-6596/2429/1/012039]

  11. R. Abbott et al. [KAGRA, VIRGO and LIGO Scientific], Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO, Astrophys. J. Suppl. 267 (2023) no.2, 29 [doi:10.3847/1538-4365/acdc9f] [arXiv:2302.03676]

  12. R. Abbott et al. [LIGO Scientific, VIRGO and KAGRA], Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run, [doi:10.1093/mnras/stad588] [arXiv:2212.01477]

  13. R. Abbott et al. [LIGO Scientific, VIRGO and KAGRA], Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data, Astrophys. J. Lett. 941 (2022) no.2, L30 [doi:10.3847/2041-8213/aca1b0] [arXiv:2209.02863]

White papers & other documents (peer-reviewed)

  1. P. Auclair et al [LISA Cosmology Working Group] (Responsibilities: co-coordinator of the white paper, co-coordinator of Chap. 2), Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel. 26 (2023) no.1, 5 [doi:10.1007/s41114-023-00045-2] [arXiv:2204.05434]

  2. P. Amaro-Seoane et al [LISA Astrophysics Working Group], Astrophysics with the Laser Interferometer Space Antenna, Living Rev. Rel. 26 (2023) no.1, 2 [doi:10.1007/s41114-022-00041-y] [arXiv:2203.06016]

  3. K. G. Arun et al [LISA Fundamental Physics Working Group], [LISA], New Horizons for Fundamental Physics with LISA, Living Rev. Rel. 25 (2022) no.1, 4 [doi:10.1007/s41114-022-00036-9] [arXiv:2205.01597]

  4. J. Baker et al., High angular resolution gravitational wave astronomy, White paper submitted to ESA’s Voyage 2050 call (2019), Exper. Astron. 51 (2021) no.3, 1441-1470 [10.1007/s10686-021-09712-0][arXiv:1908.11410]

  5. A. Sesana et al., Unveiling the Gravitational Universe at μ-Hz Frequencies, White paper submitted to ESA’s Voyage 2050 call (2019), Exper. Astron. 51 (2021) no.3, 1333-1383 [doi:10.1007/s10686-021-09709-9] [arXiv:1908.11391]

  6. M. A. Sedda et al., The Missing Link in Gravitational-Wave Astronomy: Discoveries waiting in the decihertz range, White paper submitted to ESA’s Voyage 2050 call (2019), Class. Quant. Grav. 37 (2020) 21, 215011 [doi:10.1088/1361-6382/abb5c1] [arXiv:1908.11375]

White papers & other documents (not peer-reviewed)

  1. J. B. Bayle et al., Legacy of the First Workshop on Gravitational Wave Astrophysics for Early Career Scientists [arXiv:2111.15596]

  2. V. Kalogera et al., The Next Generation Global Gravitational Wave Observatory: The Science Book, Collection of GW white papers submitted to Astro2020 (2020 Decadal Survey on Astronomy and Astrophysics) [arXiv:2111.06990]

  3. B. S. Sathyaprakash et al., Cosmology and the Early Universe, White paper submitted to Astro2020 (2020 Decadal Survey on Astronomy and Astrophysics), [arXiv:1903.09260]

  4. R. Caldwell et al., Astro2020 Science White Paper: Cosmology with a Space-Based Gravitational Wave Observatory, White paper submitted to Astro2020 (2020 Decadal Survey on Astronomy and Astrophysics), [arXiv:1903.04657]

  5. H. Audley et al. [LISA consortium], Laser Interferometer Space Antenna, Submitted to ESA on January 13th in response to the call for missions for the L3 slot in the Cosmic Vision Programme, [arXiv:1702.00786]

Outreach

  1. M. Toscani, N. Tamanini et al, Ondes gravitationnelles : un nouveau signal au cœur de la mission spatiale LISA, CNRS Hebdo (2024) [URL]

  2. N. Tamanini & C. Danielski, Don’t Panic! Gravitational waves can find new planets, LIGO Magazine (2019) [URL]

PhD thesis

MSc thesis