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Abstract

This thesis is devoted to study the inflationary applications of cosmological
perturbation theory within the framework of modified gravitational theories.
Both metric and Palatini variational principles are indroduced and employed
in different theories of gravity including f(R) theories, Scalar-Tensor theo-
ries and Generalized Gravity. For all these theories the modified action is
presented, equations of motion are derived and some main features are dis-
cussed. A short review on standard inflation and cosmological perturbation
theory is provided. Inflationary cosmological perturbations are considered
in all the gravitational theories mentioned above whose scalar and tensor
spectral indices and tensor-to-scalar ratios are found. All the results are
summarized, compared and discussed in the conclusion.
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Preface

This thesis represents the result of the work the author undertook at Im-
perial College London under the supervision of Carlo Contaldi. Although
some preliminaries has yet been studied from the beginning of 2010, full time
effort to the project has been dedicated from June to the end of November
2010. The scope of the whole thesis is the submission for the italian Laurea
Specialistica at University of Trento in December 2010.

The original part of the work has converged in a research article which
is, at the moment of writing, still in pubblication. Anyway, the eprint is
already available online at the reference

N. Tamanini and C. R. Contaldi, Inflationary Perturbations in
Palatini Generalised Gravity, arXiv:1010.0689 [gr-qc],

and will be denoted with [TC10] throughout the text. As it can easily
guessed from the title of the paper, the main studies of that work focus
on the applications of cosmological perturbation theory to the primordial
inflationary phase within the framework of Palatini Generalized Gravity,
which includes the more famous f(R) and Scalar-Tensor theories.

The present thesis is instead devoted not only to study the argument
in the Palatini approach, for which all the original analysis carried out in
[TC10] will be reviewed, but also to introuce the already derived results
within the well-known metric formulation. The target is to face with both
the variational principles and to eventually compare the obtained results,
in order to outline the differences between the two formulations in different
modified theories of gravitation.

The technical level steadly improves from the beginning to the end of the
work. Initially the style seems to coincide with a book af popular science, so
no formulae at all are given in Chapter 1. Then, specifically in Chapter 2 but
also in Chapters 3 and 4, the approach becomes harder but still pedagogical
in order to introduce and guide the reader to the more technical arguments of
Chapters 5 and 6, where several details are kept implied and more references
to other works are provided.

The outline of the thesis is as follows. Chapter 1 contains a completely
non-technical introduction to some major issues of modern cosmology. After
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vi Preface

a brief history of cosmology, the problems recently arised observing the uni-
verse, namely Dark Matter, Dark Energy and Inflation, are discussed. Then
the main motivations, both theoretical and experimental, for modifying the
General Theory of Relativity are presented in order to familiarize with the
forthcoming topics. In Chapter 2 both the metric and Palatini formulations
of General Relativity are studied showing how, regardless of the differences,
they eventually lead to the same physical theory.

In Chapter 3 a wide range of modified theories of gravity is offered. These
run from Scalar-Tensor theories to Generalized Gravity passing through
Brans-Dicke and f(R) theories. For all of them the modified action is in-
troduced and equations of motion are derived. An important equivalence
between f(R) and Brans-Dicke theories is also studied since of crucial im-
portance for the physical results of the last chapters. Chapter 4 constitutes
a short review of standard inflation and perturbation theory. First the Flat-
ness and Horizon problems are defined showing how a primordial expansion
of the universe can solve both of them. Then the standard inflationary model
is analysed and the basic elements of cosmological perturbation theory are
set up. Finally, the perturbations are applied to the inflationary epoch de-
riving the canonical results for the scalar and tensor spectral indices as well
as for other cosmological observables.

The last two chapters represent the principal part of this thesis. In Chap-
ter 5 the theory of cosmological perturbations is developed within the frame-
work of metric Generalized Gravity and the main results for inflationary
cosmology, namely the scalar and tensor spectral indices, are found. Then
some examples are provided reducing the analysis into f(R) and Scalar-
Tensor gravity and the particular model of Starobinsky inflation is studied.
Chapter 6 proceeds in parallel to Chapter 5 treating cosmological perturba-
tions within the Palatini formulation of Generalized Gravity. Again, scalar
and tensor spectral indices are computed and the examples of f(R), Scalar-
Tensor and Non-minimal inflations are discussed.

Finally, a short chapter of conclusion is given where all the work in sum-
marized and the main results are compared. An interesting table showing
the scalar and tensor spectral indices for any theory introduced is also con-
structed in order to render the physical differences between these theories
of immediate impact.

The bibliography, though sufficiently wide, cannot be thinked as a self-
consistent guide to the literature. Its only aim is to provide useful references
for the reader interested in deepening the material treated throughout the
thesis, but it can also be used as a starting basis for further readings. The
citations are denoted with the initials of the authors and the year of pub-
blication, whilst the bibliography is organized in alphabetic order.
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Notation

An attempt has been made to keep the basic notation as standard as pos-
sible. However, the use of non-metric connections did require use of some
non-standard notation. The following list will hopefully be a useful tool for
clarifying this non-standard notation. In general, the notation, standard or
not, is always defined at its first occurrence in the text and in all places that
ambiguities may arise, irrespectively of whether it has been included in this
guide. The signature of the metric is assumed to be (−,+,+,+). We set
c = 8πG = 1, with c the speed of light and G the Newton’s gravitational
constant, throughout all this thesis unless otherwise specified. Greek indices
α, β, λ run from 0 to 3 while latin indices i, j, k run from 1 to 3 (spatial com-
ponents).

gµν Lorentian metric
g Determinant of gµν
(µν) Symmetrization over µ, ν
[µν] Antisymmetrization over µ, ν
Γλµν := 1

2g
λσ(2∂(νgµ)σ − ∂σgµν) Levi-Civita Connection

∇µ Covariant derivative w.r.t. Γλµν
Rµνα

β := 2∂[µΓ
β
ν]α + 2Γβ[µλΓ

λ
ν]α Riemann tensor of Γλµν

Rµν := Rµλν
λ Ricci tensor of Γλµν

R := gµνRµν Curvature scalar of Γλµν
Gµν := Rµν − 1

2Rgµν Einstein tensor
Ψ Matter fields (collectively)
Tµν Energy-momentum tensor

Γ̂λµν Independent connection

∇̂µ Covariant derivative w.r.t. Γ̂λµν
R̂βµνα := 2∂[µΓ̂

β
ν]α + 2Γ̂β[µλΓ̂

λ
ν]α Riemann tensor of Γ̂λµν

R̂µν := R̂λµλν Ricci tensor of Γ̂λµν
R̂ := gµνR̂µν Curvature scalar of Γ̂λµν
ϕ General scalar field
ω(ϕ), V (ϕ) General functions of ϕ

T
(ϕ)
µν Scalar field energy-momentum tensor

ix



x Notation

f(R,ϕ) General function of R and ϕ

F (R,ϕ) := ∂f(R,ϕ)
∂R

a(t) Cosmological scale factor
K = 0,+1,−1 Spatial curvature

H(t) := ȧ
a Hubble parameter/rate

η :=
∫ dt
a(t) Conformal time

P Perfect fluid pressure
ρ Perfect fluid energy density
N Number of e-foldings

P := 1
2ωϕ̇

2 − V Scalar field pressure

ρ := 1
2ωϕ̇

2 + V Scalar field energy density

ϵ1 := − Ḣ
H2 Slow-roll parameter

ϵ2 := ϕ̈

Hϕ̇
Slow-roll parameter

ϵ3 := Ḟ
2HF Slow-roll parameter

ϵ4 := Ė
2HE Slow-roll parameter

α, β, γ, ψ Scalar perturbations
bi, ci Vector perturbations
hij Tensor perturbations

Φ(α) := α− d
dt [a(γ̇ + β)] Scalar gauge invariant

Φ(ψ) := −ψ + aH(γ̇ + β) Scalar gauge invariant

Φ
(V )
i := bi − aċi Vector gauge invariant

R := ψ + H
ρ+P δq Curvature perturbation invariant

Ps := k3

2π2 |R|2 Scalar power spectrum

Pt := 8× k3

2π2 |h|2 Tensor power spectrum

ns − 1 := d lnPs
d ln k

∣∣∣
k=aH

Scalar spectral index

nt := d lnPt
d ln k

∣∣∣
k=aH

Tensor spectral index

r := Pt
Ps

Tensor-to-scalar ratio
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Chapter 1

Introduction

1.1 300 Years of Gravitation

Since Newton’s famous apple, we have known that the distant stars we see
in a sparkling starry night are connected, to each other and with us, by the
same phenomenon which forces our feet to stay stuck on the ground. This
interaction, capable of crossing such long distances, has been historically
known with the name of gravity. Gravity dominates the physical behaviour
of our universe from distances involving a few centimeters to billions of light
years. It forces the rain to fall, the Tower of Pisa to tilt, the Earth to orbit
around the Sun and the galaxies to form. It is the strangest and most elusive
force of nature. No wonder it has taken hundreds of years to realize how it
works in depth. To this day, as we will see, a complete understanding has
far from been achieved.

The Newtonian theory of gravity was probably the first unification of
two different phenomenological interactions: ”local” and celestial gravity. It
was conceived to describe how physical objects behave under the influence
of gravity. Remarkably, it worked for more than two hundred years: all
the astronomical observations of the solar system collected at the time were
successfully explained by the theory. There were no signs to suspect that Sir
Isaac Newton’s theory was not the definitive interpretation of gravity. The
only unexplained fact, the motion of the perihelion of Mercury, could be
justified postulating the existence of a new missing inner planet1. No one,
at the end of the nineteenth century, could guess that in order to explain
this anomaly the whole Newtonian theory had to be deeply revolutionized.

The change came with the new century. In 1916, whilst the great war
was raging throughout Europe, Albert Einstein gave birth to the final form
of his General Theory of Relativity (GR). This brand new theory was con-
ceptually different from every classical theory formulated until then (and

1It is interesting to note how this missing planet, called Vulcan, was perhaps the first
example of Dark Matter (see next section).
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2 Chapter 1

from the nascent Quantum Mechanics too). The most revolutionary fea-
tures introduced were the Equivalence Principle, which identifies inertial
and gravitational mass, and the new gravitational field equations connect-
ing spacetime geometry to matter distribution. These were able not only to
provide the right orbit of Mercury, but also to predict a slight deviation in
the motion of light rays grazing the sun. This new behaviour of light was
observationally confirmed by the famous expedition of Sir Arthur Eddington
carried out in occasion of the 1919 solar eclipse. Thanks to this, it was clear
that Einstein’s theory had to be considered the new theory of gravitation.

Since then, GR has been used to compute all the necessary calculations
involving large distances and high energies. Remarkably, as it happened
with Newton’s theory, it has survived almost a century satisfying all the
tests conceived to discredit it. At the moment it is indeed well known that
GR, at least within intergalactic distances, is the best theory describing
gravity. Furthermore, animated by its successes, physicists and astronomers
started to formulate mathematical models of the universe as a whole. The
only tools they had were Einstein’s theory of gravity and the assumed large
scale homogeneity and isotropy of the universe (Cosmological Principle).
Their aim was to unveil all the cosmic secrets. These men founded a new
science: Cosmology.

We can divide these first cosmological models into two classes: the dy-
namical models, in which the universe as a whole evolves in time, and the
statical models, in which the universe lied and will eternally lie as it stands.
In the second class we find Einstein’s attempt to freeze the cosmic evolu-
tion introducing the nowadays so fashionable (see next section) cosmological
constant. However, after Hubble’s 1929 discovery of cosmic expansion, all
the static models were abandoned2 and became clear that the universe is
in fact a dynamical quantity. The initial singularity problem then arose:
if the universe is expanding it means that in the past it was much smaller
than now. Letting the time run sufficiently backwards, it is possible to see
all the galaxies collapsing to the same point. Although there is nothing in
the past forcing the universe to expand as it does today, the most reliable
cosmological models based on GR contained this controversial singularity,
which will be named the Big Bang3.

According to the Big Bang Theory (or Big Bang Model) the universe
arises from a state of infinite matter/energy density. At that time, it was
all concentrated in a region smaller than an atomic nucleus, but it started
immediately to expand resulting, after billions of years of cosmological struc-
ture evolution, in the universe we see today. All the models including the
Big-Bang singularity, differed only for the time behaviour of the expanding

2Except for the Steady State Cosmology which lasted until the discovery of the CMB.
3It is curious that the term Big Bang was first coined by Fred Hoyle in order to deride

the theory (Hoyle supported the Steady State Cosmology).
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radius, but they agreed on predicting an extremely isotropic background
radiation created during the early hotter stages. This radiation, known as
the Cosmic Microwave Background (CMB), was (accidentally) discovered
back in 1967, providing the most important evidence of the initial Big Bang
singularity.

After this milestone confirmation, cosmologists began to refine their the-
ories on cosmic evolution. The result was the birth of a standard model of
cosmology in which, after the Big Bang explosion, the universe underwent
a radiation and then a matter dominated era. All the calculations needed
for the universe to evolve from its initial stages to its final shape were per-
formed within this framework. It was found that the genesis of all elements,
galaxies, stars and all the other cosmological constituents, could fit with
high precision in the predicted evolving background. Moreover, thanks to
the newest technological progresses, physicists started to observe the very
tiny (10−5) CMB anisotropies, finding again strong evidences supporting the
cosmological standard model.

It is then easy to realize how, except perhaps with some remaining issues
regarding the very first instants (see chapter 4), towards the end of the
twentieth century our understanding of the universe seemed to be close to
complete.

1.2 The Present Cosmological Riddles

In the last twenty years cosmology has radically changed. It is by now well
known that the cosmological standard model failed to explain some of the
most recent astronomical observations. This has been the result of the rapid
development of observational cosmology beginning in the 1990s. To date,
it is established that the universe has undergone two unpredicted phases of
cosmic acceleration and is pervaded by some yet undetected kind of matter
which has been named Dark Matter. One of these two accelerated epochs is
going on now, in the oldest age of our universe4, and is due to an unknown
form of energy, called Dark Energy. Conversely, the other phase took place
during the very first moments after the Big Bang and is denoted with the
name Inflation. In the following, we focus specifically on these top challeng-
ing issues of modern cosmology.

Inflation. We will analyse in more technical details this cosmological
era in chapter 4, however some preliminary remarks can be anticipated here.
The inflationary paradigm is perhaps the less dramatic among the modern
cosmological problems. Inflation is postulated to have happened in a time

4This strange coincidence that the universe started to expand exactly during the human
kind’s living period, is sometimes regarded as an open problem of modern cosmology
(Coincidence Problem).
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when the energies involved were close to the Planck Scale (1019 GeV). Then
it is not surprising that GR, together with the cosmological standard model,
breaks down approaching the Big Bang. After all GR has been tested at
relatively low energies and one can only assume it works also at higher ener-
gies, where, probably, some new (more fundamental) theory has to replace
it. As a matter of fact, there are strong indications, especially from Black
Hole physics where quantum and gravitational effects converge, that such a
theory has to exist.

It follows from this that all the problems regarding this early accelerated
epoch can be transferred from cosmology to fundamental physics. Our lack
of predictivity during this cosmological phase can be attributed to the failure
of GR in describing high energy physics. However a cosmological model can
still be built in order to derive the right evolution and behaviour of the
universe below these energies. This is what has been done during the last
century in order to save the cosmological standard model.

In any case, a theory explaining how this primordial accelerated phase
happened has been recently set up. It addresses the main inflationary
paradigm problems, namely the Horizon and Flatness Problems (see chapter
4), and provides a mechanism to generate seeds for the late time cosmological
structures. The model introduces a new scalar field, the inflaton, minimally
coupled to Einstein’s gravity. The inflaton not only forces the universe to
expand, it also provides a way to create all matter fields of the particle
physics Standard Model. This can be obtained exactly at the end of the
accelerated phase, when the residual oscillations of the inflaton go on to ex-
cite the modes of other fields (Reheating). Unfortunately, the main reasons
which lead us to consider this new scalar field are solely phenomenologi-
cal. Despite its non-fundamental nature, this theoretical model of inflation,
which we will denote ”Standard Model of Inflation”, succeeds in predicting
all the data collected so far.

In conclusion the inflationary cosmological epoch is somehow produced
by a high-energy modification of GR, whose effects can be modelled through
the introduction of a scalar field. At the moment, this standard model of
inflation is enough for deriving the right behaviour of the primordial expand-
ing phase. As we will soon see, integrating this model into a framework able
to solve the two other problems of modern cosmology, leads to a faithful
representation of our universe.

Dark Energy. Dark Energy is certainly the most unexpected outcome
of modern astronomical observations. Its discovery dates back to 1998, when
a type Ia supernovae survey surprisingly found the universe accelerating, as
later confirmed by CMB and gravitational lens experiments. Today the
term Dark Energy denotes a strange form of energy filling the universe and
driving its second accelerated phase. At first, physicists tried to identify
Dark Energy with the quantum energy of vacuum, but this calculations pre-
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dicts an energy density 10120 times different from the observed value. It was
soon realized that the new expanding cosmic phase is driven by something
completely different from usual physics.

The main feature of Dark Energy is negative pressure. The only way
to make gravity repulsive is to consider a negative pressure fluid in the
equations governing the cosmic evolution. This unnatural property cannot
belong to any matter fields we discovered so far and the simplest way to
obtain a late time cosmic acceleration5, is to modify the gravitational field
equations introducing the famous Einstein’s cosmological constant Λ. Inter-
estingly, the minimal modification introduced by setting a positive value for
Λ into the cosmological equations, is enough to explain the contemporary
universe acceleration.

The cosmological constant is not connected to any physical quantity and
its introduction can only be justified by its accuracy to match astronomical
data. In addition, we know that Dark Energy in general does not interact
with other fields via any of the known forces of nature. As far as we have
understood, Dark Energy requires a new kind of physics. This is probably
what makes it so engaging in the eyes of the scientific community...

Dark Matter. Dark Energy is not the only surprise the universe has
reserved for us. In the final quarter of the twentieth century6, the increasing
observations of galaxy dynamics suggested that most of the mass making
up galaxies was missing. The anomaly was soon explained by postulating
the existence of some undetected form of matter, namely Dark Matter. The
particles composing Dark Matter do not interact electromagnetically, and
the only way we can see their presence is through the gravitational effects
they produce on the visible baryonic matter. First evidences for Dark Mat-
ter came from measuring the deviation it causes on galaxy rotations; later,
CMB and gravitational lensing observations have confirmed these indica-
tions. By now these anomalies can be explained assuming that every galaxy
is surrounded along the equatorial plane by a circular halo of Dark Matter.

Although we cannot detect it directly, we know that Dark Matter, unlike
Dark Energy, shares some properties with ordinary matter. This leads to
the idea that it is made of particles very similar to the baryonic ones. In fact,
models where Dark Matter is composed by a yet undetected particle coming
from some theoretical extension of the Standard Model of particle physics,
are widely studied by physicists. Indeed, some of the best candidates for

5Theories which consider a scalar field to drive this second accelerated expansion,
parallelling the role of inflaton in inflation, are also studied. They are collected under the
name of Quintessence. However, invoking a scalar field does not seem to be so promising
at late times as it is during inflation inasmuch as it implies other theoretical problems.

6Remarkably, in the 1930s the astrophysicist Fritz Zwicky already provided some evi-
dences of missing galaxy mass, but it took forty years before someone else confirmed his
predictions.
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Dark Matter are supersymmetric partners of already discovered particles.
In any case the Dark Matter is assumed to be a hypothetical particle which
froze out from the cosmic plasma at some early times. It has then evolved,
interacting with other matter gravitationally only, until it has reached the
shape of a cosmic web, whose knots locate the large structure positions in
the universe. As we can easily realise, Dark Matter played an important
role during the cosmological period of structure formation. Hence, under-
standing its properties and dynamics will probably unveil some secrets our
universe still hides.

1.3 The ΛCDM Model

Having pointed out the less penetrated cosmological issues, to understand
what we know about the universe today, we just have to analyse the cosmic
inventory, i.e. the abundance of different forms of energy in the universe.
Our latest datasets coming from different sources, such as the CMB and
supernovae surveys, seem to indicate that the energy budget of the universe
is the following: 4% ordinary baryonic matter, 23% Dark Matter and 73%
Dark Energy. This result indicates that what we have discovered so far is
just a minimal fraction of the whole universe. There will be a huge amount
of work for future cosmologists, astronomers and astrophysicists in order
to analyse and understand this cosmic dark side. The experimental side,
rather than the theoretical, seems perhaps to be more promising if we look
at the immediate future. Hopefully, thanks to the incessant progress of
technology, we will soon be able to build new devices to scan the sky. These
improvements will permit us to observe the universe without ”looking” at it.
Instead of detecting the usual electromagnetic radiation, they will be able to
measure elusive neutrinos or feeble gravitational waves, whose penetration
will allow us to probe the universe up to the very first instants. These new
observational windows will give us a large amount of data from which a
renewed theoretical framework may emerge. In this scenario, the only thing
on which we can bet, is that the universe has not run out of surprises.

Waiting for these forthcoming observations, we can only deal with the-
ories facing the main problems of modern cosmology (see above). Putting
together all the best models addressing those problems individually, we can
obtain a general framework in which the behaviour of our universe is well
described. This puzzle of different answers provides a faithful reproduction
of the cosmic evolution and in its most reliable version takes the name of
ΛCDM Model (Lambda-Cold Dark Matter). Its features are made explicit
by its acronym: it assumes the existence of both a cosmological constant
(Λ) and non-relativistic (cold) Dark Matter. Moreover, in order to repro-
duce the early time behaviour, the ΛCDM model is enlarged to include
an inflationary primordial phase usually driven by a scalar field (inflaton).
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This early accelerated stage is added, with its pros and cons, exactly in the
form discussed previously (see chapter 4 for a deeper discussion). With this
extension the ΛCDM model is the simplest to fit all the data collected so
far.

We can briefly summarize the universe’s history as given by the ΛCDM
model as follows. Immediately after the Big Bang, which gave born to all
the cosmic stuff (including spacetime itself), we can identify the so called
Planck time (10−43 s after the BB). Before this moment we cannot make
predictions with known physics. A unified comprehension of quantum and
gravitational phenomena is indeed needed in order to push our knowledge
closer to the Big Bang. In any case, from the Planck time on, we know
all the main features of cosmic evolution. The first stage, beginning at
Planck time and ending with Reheating (10−32 s), is the previously discussed
inflationary phase. Baryogenesis, in which quarks were created (10−10 s),
followed. Subsequently quarks started to aggregate together to form hadrons
(10−4 s) which afterward formed the first light nuclei, i.e. H, D, T, He, 3He
and Li (100 s). Then we arrive at the matter-radiation equality (100,000
yrs) where the universe ceased to be radiation dominated and began to
be matter dominated. After that an important event happened, namely
Recombination (300,000 yrs), when the first atoms were formed and the
CMB photons were released. This photon decoupling marks the time from
which the universe ended to be opaque and started to be transparent to
the electromagnetic radiation. The subsequent epoch, until the formation
of galaxies, galaxy cluster, stars and all the other cosmological structures
(few Gyrs), has been named the Cosmic Dark Age. The name is justified
by the unusual lack of scientific observations regarding this era, though we
think we understand how structures formed from the very homogeneous gas
emerging from the Recombination, According to the ΛCDM model Dark
Matter played a main role during the dark age. The real difference from all
the other cosmological models lies exactly in these last cosmic phases.

In the ΛCDM model it is assumed that non-relativistic Dark Matter
decoupled from all the other particles during some early stage. Thereafter
its free (but for gravity) evolution determined the shape of the cosmologi-
cal structures we see today. Remarkably, considering non-relativistic (cold)
Dark Matter instead of relativistic (hot) or mixed Dark Matter matches the
observations in a more consistent way. This, better than anything else, gives
to the ΛCDM model the status of new standard cosmological theory.

Moreover, besides the issues regarding Dark Matter, central for the
ΛCDM model is also the role of Dark Energy. The theory predicts indeed
another transition from the matter dominated era to a Dark Energy domi-
nated one (∼5 Gyrs). In this new phase, in which we still live today (13.7
Gyrs), the universe expansion is accelerating again. In the ΛCDM model
this is achieved by the progressive importance of the cosmological constant
term in the gravitational field equations. Unfortunately, the model does
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not provide any information about the nature of this change and neither is
able to explain why it happened. These very last features make the ΛCDM
model more similar to a fitting of astronomical data than a self-consistent
cosmological theory.

In conclusion, being a collection of individual solutions to different prob-
lems, the ΛCDM model lacks a solid theoretical foundation. Its strength
relies mostly on its incredible accuracy of matching observational data. How-
ever, from a global point of view, this does not seem a satisfactory description
of the universe we live in. Perhaps we missed somewhere some fundamental
ingredient which could explain all the cosmological oddities. If such a sort of
key exists, it is more probably hidden by our theoretical shortcoming. Per-
haps even our theory of gravitation, despite its short-range achievements,
fails to describe the universe at larger or higher-energy scales. Perhaps, at
those scales, we need to modify GR.

1.4 Beyond General Relativity

During the first century of its life, numerous attempts, driven by different
reasons, have been made to modify or replace GR. Even before the recent
astronomical observations started to shake the minds of cosmologists, we
register a large number of attempts, mainly led by theoretical arguments,
to make some minimal or radical changes to the theory. Curiously enough,
we can consider the famous introduction of the cosmological constant made
by Einstein himself as the very first modification to GR. As it turned out,
Einstein was wrong, showing that revising a successful and elegant theory as
GR can be a hard game if played without any theoretical nor experimental
justification7.

Reasons for trying to alter GR however came out from the other great
achievement of early twentieth century physics: Quantum Mechanics (QM).
As soon as QM was set up in its final form during the 1920s, physicists began
to formulate theories in which some or all of the new concepts coming from
this new unusual theory were applied to GR. As a particularly successful
example among these early works, we can pick out the so-called Einstein-
Cartan(-Sciama-Kibble) theory, which tries to include the spin, a purely
quantistic quantity, inside GR without spoiling general diffeomorphism in-
variance. Clearly, all these theories turned out to be either wrong, i.e. ruled
out by experiments, or phenomenologically indistinguishable from GR itself,
giving changes only at some untestable scales where GR cannot be expected
to hold. This last kind of modification can however be helpful if we want

7Einstein’s motivations for introducing the cosmological constant were more philosoph-
ical/theological than scientific. He was convinced that the universe had to be static and
after the discovery of universe’s expansion, he referred to this issue as ”the biggest blunder
of his life”.



Introduction 9

to unify GR with some other different theory. Leaving its well verified side
as it is and changing its high energy limit has been considered as one of the
most viable way to describe GR within a quantum field formalism.

Quantum Field Theory (QFT) is the natural evolution of QM. It is
the most successful physical theory, experimentally speaking, which unifies,
in a consistent theoretical way, QM and Special Relativity. QFT describes
correctly the behaviour of all the non gravitational interactions (electromag-
netic, weak and strong) and provides a unified framework where all of them
are included in a single theoretical model, namely the Standard Model of
particle physics, which has been tested with incredible accuracy8. It seems
then natural that physicists started to wonder if also the excluded gravita-
tional interaction could become part of this great unification. Consequently,
the most invoked reason to modify GR has ever been this one: a consistent
quantization of gravity, a theory called Quantum Gravity.

As was soon realized, the road to Quantum Gravity is a long, hard path
and GR, as it is, cannot be easily quantized. Nowadays there is a large
number of theories which have the aim to quantize gravity. This wide range
spaces from Loop Quantum Gravity to String Theory, including Twistors,
Causal Set, Causal Dynamical Triangulation and some others. None of them
however, despite the huge amount of new concepts introduced, has yet suc-
ceeded in building a falsifiable quantum theory of gravity. This probably
happens exactly because all the major modifications given by these theories
arise in regions which experiments cannot probe. However, even though
the search for Quantum Gravity has yet not given physical results of some
relevance, it has stimulated the proliferation of alternative mathematical
formulation of GR. Among these we can mention the tetrad (or vierbein)
formalism and the Hamiltonian approach to GR (ADM formalism), which
played an important role in the modern formulation of Quantum Gravity.
The studies of all these new formalisms, besides the benefits given to theoret-
ical physics, has provided also some hints in particular fields of mathematics
such as mathematical physics and differential geometry. Moreover, having
new ways of describing GR means new possibilities of modifying it. As
a matter of fact, all the (quantum gravitational) theories cited above are
constructed within some new formulation of gravity.

Although there are no possible phenomenological ways to verify them,
there is still a promising framework where these theories can be theoretically
tested: black hole physics. Near a black hole we can find together high
spacetime curvature and short distances (which can be summarized as high
energies) giving the perfect environment for gravitational quantum effects
to emerge. In this scenario some small steps toward a unification between
QFT and GR has already been made. Black hole thermodynamics is in

8A part from the yet undetected Higgs boson, which recently is the main target of LHC
research.
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fact a useful application of QFT on curved spacetime, which is nothing but
the attempt of applying QFT on spaces curved by gravity. Remarkably, the
Hawking’s famous radiation, perhaps the most surprising result coming from
black hole physics, has been first derived using this last approach. Now every
theory of quantum gravity tries to explain somehow the black hole results,
rather than furnish testable phenomenological observables. Indeed this is
the best way we have to probe high energy modifications to gravity.

From all that we have said it emerges that theoretical arguments for
modifying gravity abound and have been widely considered among physi-
cists. Some kind of reconciliation between gravity and quantum physics
seems to be needed in order to understand how the universe behaves in
certain spacetime regions such as near the Big Bang or a black hole. The
dream of finding this unified description of nature has been, and still is, the
main boost in the research of gravity modifications.

Theoretical issues are not the only reasons for which physicists try to
modify GR, even though they compose the dominant part. Philosophi-
cal and phenomenological motivations has been invoked as well. In the
first of these two cases we find the already discussed Einstein’s cosmolog-
ical constant9 and the well known Brans-Dicke Theory10. This last model
represents an interesting attempt to build a gravitational theory compatible
with Mach’s principle. It substitutes the Newton constant with a dynami-
cal scalar degree of freedom, or, to put it another way, it introduces a new
scalar field non-minimally coupled to gravity. Brans-Dicke Theory has been
considered for long time the most promising alternative to GR. Its general-
ized versions, the so called Scalar-Tensor Theories of gravitation (see section
3.1), are still today studied as possible models of inflation and Dark Energy.

The phenomenological side has instead been silent for long time. We
must wait for the arrival of the recent cosmological problems to find some
observations against GR predictions. However, once these observations were
well consolidated, it has not taken long for physicists to start modifying
gravity in order to account for experiments. As a matter of fact, the first
modification due to phenomenological reasons was proposed immediately
after the discovery of the galaxy rotation problem. This modification of
gravity has not been made, as all later changes, on GR itself but, because of
the nature of the problem to be solved, on Newtonian Gravity. The resulting
theory, known as MOND (Modified Newtonian Dynamics), was created to
modify the Newtonian potential in the slow acceleration regime. It succeeded
in explaining the measured, and inconsistent with Newton theory, rotation
rates of spiral galaxies, but it failed to account for the observations when
applied to galaxy clusters. A relativistic version of MOND, known under the
name of Tensor-Vector-Scalar Gravity (TeVeS), has been recently proposed

9See note at page 8.
10See page 27.
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to explain also the post-Newtonian limit. Although this theory is considered
a possible alternative to Dark Matter, it does not seem to be so promising
as its competitor, which, as we have seen, has been included in the ΛCDM
model.

More interesting attempts have come from the other two major issues of
modern cosmology. As mentioned, the inflationary epoch can be attributed
to some unknown behaviour of gravity at high energy scales. Accordingly,
try to modify somehow GR in this limit to account for this needed primor-
dial acceleration, might then be considered a natural way to pursue. This
is exactly what physicists did, as soon as the inflationary problem arose,
and what cosmologists still do today. The standard model of inflation is
in fact nothing but a phenomenological modification to gravity which gives
consistent deviations from GR only during the first instants of the universe.
There is no need however to invoke a new scalar field. Modifications to
gravitational interaction alone have been also found to be viable models for
inflation. The success of the inflaton field model relies only on the accuracy
it has to fit the astrophysical data collected so far. Nonetheless, other grav-
itational models could address specific questions in a more natural way or
even work as a bridge between GR and high energy physics.

On the other side, the Dark Energy problem has been, in recent years,
the most studied under the point of view of modifications of gravity. This has
happened since the introduction of the cosmological constant, as it appears
in the ΛCDM model and as pointed out previously, does not seem to have
any theoretical background. An appropriate modification of the gravita-
tional interaction can in this case lead to an accelerated late time expansion
and simultaneously match the low energy limit of some high energy theory.
However, every modified theory has to account for all the phenomenolog-
ical tests GR brilliantly passed throughout its entire history. Since these
experiments have been performed with very high precision and accuracy, all
the considered modifications must be constrained to small deviations from
GR itself, at least at those scales where GR has been well verified. This
gives several difficulties to all modified theories inasmuch as they have to
account for both the observed late time acceleration at large scales and the
GR phenomenology at short scales. In any case these reasons have not
stopped cosmologists from building models able to satisfy both behaviours.
At the moment, these models, despite all the theoretical and phenomeno-
logical problems, are the best (and maybe the only) viable alternatives to
the overused cosmological constant.

In conclusion, questioning over the possible modifications of gravity is
not an useless exercise since, as it happened in the past, it could lead to a
better understanding of the theories we trust and of the universe we live in.
More than one hundred years ago scientists were trying to explain the small
anomalies of Mercury’s motion having no idea these could be described only
by the great power of a theory such GR. Today we are trying to understand
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all the oddities we observe in the entire universe and no one knows what
we are ignoring and going to discover. Will this (re)search lead to a new
astonishing revolution in our vision of the universe? Time will tell...



Chapter 2

Lagrangian Formulation of
General Relativity

In order to understand by which mechanisms it is possible to modify gravity,
we first need to look at an alternative formulation of GR itself. Accordingly,
this chapter is devoted to develope a lagrangian approach to the theory
using both metric and Palatini principles. These formalisms, which will be
introduced soon, will turn out useful later, when we will present how GR
can be modified starting from chsnging its action.

The issues contained in the present chapter, conversely to the following
ones, are exposed in a rather pedagogical way in order to clarify the tech-
niques and the notation which will be massively utilized in what follows.
No references are given through the text since the material presented can be
found in some classical textbooks of GR (see for example [MTW73, Wal84]).
For historical facts we refer to [FFR82] and the references therein.

2.1 Metric Variational Principle

We start presenting the most intuitive way to formulate GR from a varia-
tional principle, namely the metric formulation. Remarkable this method
was one of the firsts which succesfully derived the correct gravitational field
equations. Back in 1916, just five days before Einstein discovered exactly
those equations, Hilbert succeeded in building a suitable action for gravity.
Both the physicist and the mathematician found what we today call the
Einstein field equations, eventually demonstraded to be the right equations
describing gravity.

The method adopted by Hilbert is based on vary a suitable action for the
gravitational field only with respect to the metric tensor gµν . Such an action
has to be invariant under general transformations of coordinates (diffeomor-
phisms) and has to depend in some way on the Riemann curvature tensor
Rµνα

β . This last tensor describes indeed the geometry of spacetime, which

13
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has to be connected with the distribution of mass by the field equations. It
is then clear that any action constructed with the purpose of deriving these
field equations, needs to treat somehow the Riemann tensor.

The unique scalar we can build from Rµνα
β with the only use of the

metric tensor and which has only up to (linear) second-order derivatives in
gµν (there are no invariants with only first derivatives), is the well-known
curvature (Ricci) scalar R. As Hilbert intelligently understood, the first
choice one can make for the gravitational action is then to consider simply
R as the whole Lagrangians. We will see that this action alone suffices to
derive the correctly Einstein field equations.

Consider then what we call the Einstein-Hilbert action

SEH :=
1

2

∫
d4x

√
−gR , (2.1)

with g := det gµν . The integration is taken over the invariant measure of
integration d4x

√
−g and the factor 1/2 in front of the integral appears only

to reproduce the correct Newtonian limit once derived the field equations.
The curvature scalar R, Ricci tensor Rµν and Riemann tensor Rµνα

β are
defined by

R := gµνRµν ; Rµν := Rµλν
λ ; (2.2)

Rµνα
β := ∂µΓ

β
να − ∂νΓ

β
µα + ΓβµλΓ

λ
να − ΓβνλΓ

λ
µα ; (2.3)

where Γλµν are the components of the usual Levi-Civita connection (Christof-
fel symbols), which are given in terms of the metric by

Γλµν :=
1

2
gλσ (∂νgµσ + ∂µgνσ − ∂σgµν) . (2.4)

We stress here that the Levi-Civita connection is the only connection com-
patible with the metric condition

∇λ(gµν) = 0 , (2.5)

with the torsionless condition

Sµν
λ = Γλ[µν] = 0 , (2.6)

and it is uniquely defined once given a specific metric1 gµν . Here ∇ denotes
the covariant derivative with respect to Γλµν , Sµν

λ is called the torsion tensor2

and [µν] stands for antisimmetrization on the µν indices. In particular, the
torsionless condition (2.6) implies Γλµν = Γλνµ.

1To find the unique expression of Γλ
µν , namely (2.4), from conditions (2.5), (2.6), we

just have to subtract cyclic permutations of (2.5).
2It is a tensor being the difference of two connections.
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We proceed considering a general variation of the action (2.1) with re-
spect to the inverse metric tensor gµν . We have3

δgSEH =
1

2

∫
d4xδ(

√
−gR)

=
1

2

∫
d4x

(
Rδ

√
−g +

√
−gRµνδgµν +

√
−g gµνδRµν

)
. (2.7)

In order to complete the variation we need to find δ
√
−g and δRµν .

The first one depends on the variation of the metric determinant

δ
√
−g = − 1

2
√
−g

δg . (2.8)

To compute δg we need to recall from matrix theory the following expression
holding for any matrix M and any differential operator δ

δ(ln detM) =
1

detM
δ(detM) = tr(M−1δM) , (2.9)

where tr denotes the trace. Taking this equation with the metric matrix gµν
gives

δg = g gµνδgµν . (2.10)

Note that δgµν and δgµν are not connected by rising and lowering indices.
They are two different tensors and not the covariant and controvariant part
of the same tensor4. To find how they are connected we take the variation
of gµνgµν = 4, which gives

δgµνgµν + gµνδgµν = 0 . (2.11)

Using this relation we then obtain the variation of the determinant of the
metric

δg = −g gµνδgµν , (2.12)

which inserted in eq. (2.8) gives

δ
√
−g = −1

2

√
−g gµνδgµν . (2.13)

We still need the variation of the Ricci tensor Rµν . This is explicitly
given by

δRµν = δRµλν
λ

= ∂νδΓ
λ
λµ − ∂λδΓ

λ
µν + δΓαµλΓ

λ
να

+ΓαµλδΓ
λ
να − δΓαµνΓ

λ
λα − ΓαµνδΓ

λ
λα , (2.14)

3We could equivalently vary with respect to gµν , but the calculation would be more
difficoult in that way.

4The misunderstanding raises from an abuse of notation. Denoting the two variations
with δgµν = δ[gαβ ]µν and δgµν = δ[gαβ ]µν , it is clear that gµλgνσδ[gαβ ]µν = δ[gαβ ]

µν ̸=
δ[gαβ ]µν .
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where the variation of Levi-Civita connection δΓαµν has to be considered with
respect to the metric gµν . We can however avoid the calculation of δΓαµν by
noting that this quantity is indeed a tensor, despite the connection Γαµν is
not. This can be easily seen by the transformation law

Γ′λ
µν =

∂x′λ

∂xα
∂xβ

∂x′µ
∂xγ

∂x′ν
Γαβγ +

∂x′λ

∂xα
∂2xα

∂x′µ∂x′ν
. (2.15)

Varying this equation with respect to Γλµν (or equivalently with respect to
gµν) gives

δΓ′λ
µν =

∂x′λ

∂xα
∂xβ

∂x′µ
∂xγ

∂x′ν
δΓαβγ , (2.16)

since the inhomogeneous term vanishes in the variation. This tells us that
δΓλµν transforms exactly in a tensorial way, as was first realized by Palatini

back in 19195. Accordingly the covariant derivative of δΓλµν is well defined
and in particular we have

∇νδΓ
λ
µλ = ∂νδΓ

λ
µλ − ΓαµνδΓ

λ
αλ (2.17)

∇λδΓ
λ
µν = ∂λδΓ

λ
µν + ΓλλαδΓ

α
µν − ΓαλµδΓ

λ
αν − ΓαλνδΓ

λ
µα . (2.18)

Taking the difference of these two expressions and comparing it with eq. (2.14)
we find6

δRµν = ∇νδΓ
λ
µλ −∇λδΓ

λ
µν . (2.19)

This is called Palatini identity.
We can now finish to derive the equation of motion for the Einstein-

Hilbet action. Substituting eqs. (2.13) and (2.19) back in eq. (2.7) we get

δgSEH =
1

2

∫
d4x

√
−g

(
Rµν −

1

2
Rgµν

)
δgµν

+
1

2

∫
d4x

√
−g

[
∇ν

(
gµνδΓλµλ

)
−∇λ

(
gµνδΓλµν

)]
, (2.20)

where we have used the metric condition (2.5) to shift gµν inside the covari-
ant derivatives. The last two terms are just total derivatives. Considering
vanishing boundary conditions (all the physical fields and their derivatives
are zero on the boundaries of the integration region) these can be integrated
away using Stokes theorem7. The variational principle δgSEH = 0 gives thus

5The original article (in italian) is [Pal19].
6A faster, but not covariant, way to perform this calculation is to evaluate δRµν in the

normal frame, where all the Γ’s vanish, and then apply the minimal coupling principle,
namely replace all the normal derivatives with the covariant ones. Using this procedure
eq. (2.19) follows immediately from eq. (2.14).

7Actually this is not true for gravity where we cannot impose vanishing boundary con-
ditions. However, adding a total divergence to the action, namely the Gibbons-Hawking-
York boundary term [GH77, Yor72], is still possible to have a well-define variational pro-
cedure.



Lagrangian Formulation of General Relativity 17

the following equations of motion

Gµν := Rµν −
1

2
Rgµν = 0 , (2.21)

which are nothing but the Einstein field equations in vacuum. Gµν is called
the Einstein tensor and is used to denote the left hand side of the gravita-
tional field equation.

Finally, we note that if we want to include a cosmological constant Λ in
the theory, we need just to add to the Einstein-Hilbert action the following
constant term

SΛ := −
∫
d4x

√
−g 2Λ . (2.22)

The variation of the whole action will give the correct modified Einstein
tensor with a cosmological constant

Gµν = Rµν −
1

2
Rgµν + Λgµν . (2.23)

2.2 The Matter Action

In order to obtain the general Einstein equations from a variational principle,
we need to extend the Einstein-Hilbert action (2.1) with a new term giving
the right hand side of the fields equation. This is nothing but the action
of all the physical fields but the gravitational one. It is called the matter
action SM and it depends, besides all the other fields collectively denoted
by Ψ, on the gravitaional field gµν , in order to assure the invariance under
general transformations of coordinates8.

The whole action we must consider is then

S = SEH(gµν) + SM (gµν ,Ψ)

=

∫
d4x

√
−g

[
1

2
R+ LM (gµν ,Ψ)

]
, (2.24)

where LM is the matter Lagrangian. The field equations are derived varying
with respect to gµν and Ψ. Since SEH does not depend on any other field
besides gµν , the variation with respect to Ψ will give the usual equations of
motion for all the other physical fields,

δSM
δΨ

= 0 . (2.25)

8In general the matter action can depend also on the connection Γλ
µν , which is however,

at least in the metric formulation, a function of the metric gµν . In the next section, when
the connection will be considered independent from the metric, this issue will be briefly
discussed, as it can imply deviations from canonical GR.
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Varying with respect to gµν gives the same result we found in the previous
section for the Einstein-Hilbert action

δgSEH =
1

2

∫
d4x

√
−g

(
Rµν −

1

2
Rgµν

)
δgµν , (2.26)

plus the variation of the matter action

δgSM =

∫
d4x

(
δ
√
−gLM +

√
−gδLM

)
=

∫
d4x

√
−g

(
δLM
δgµν

− 1

2
gµνLM

)
δgµν , (2.27)

where we have used eq. (2.13) to compute δ
√
−g. The variational principle

applied on the whole S gives then

δS =

∫
d4x

√
−g

(
1

2
Gµν +

δLM
δgµν

− 1

2
gµνLM

)
δgµν = 0 . (2.28)

We now give the general definition of the energy-momentum tensor as

Tµν := gµνLM − 2
δLM
δgµν

. (2.29)

This energy-momentum tensor is exactly the same of the corresponding one
we can derive using Noether theorem with diffeomorphism invariance of the
action. In other words, it has the same meaning of the usual Tµν we can
find in all the other formulation of GR. The equations we obtain from the
variation (2.28) are then the standard Einstein field equations, which read

Gµν = Tµν . (2.30)

2.3 Palatini Variational Principle

We present now another way of deriving the gravitational field equations,
namely the Palatini method of variation. This formulation has the purpose
of relaxing some of the assumptions the metric approach relies on. It con-
sists in considering the connection entering the Einstein-Hilbert action as
completely independent from gµν , though it is still taken to be torsion free9.

A variation with respect to the new degrees of freedom of the indepen-
dent connection will produce new equations of motion, which will be used
to determine the relation between the Levi-Civita connection and the in-
troduced independent connection. The Einstein field equations are in fact
solely defined by the use of the Levi-Civita connection and cannot be consid-
ered as the physical equations of the gravitational field if constructed with
the use of a different connection. The relation between the two connections

9A connection is said to be torsion free if it satisfies the torsionless condition (2.6).
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is needed for replacing the unphysical connection in favor of the physical
Levi-Civita connection. As we will see, the Einstein-Hilbert action alone
will imply that the two connections are indeed the same, leading, again, to
the yet derived Einstein field equation.

Consider the Einstein-Hilbert action plus the matter action. We will de-
note with Γ̂λµν the new independent torsionless connection to dinstinguish it

from the usual Levi-Civita connection Γλµν . Moreover all the quantities now

formed with Γ̂λµν will be in general marked with an overhat. For example,

the curvature scalar and Ricci tensor constructed with Γ̂λµν will be denoted

by R̂ and R̂µν , respectively; while the same tensors will be as usual denoted
by R and Rµν if composed by the Levi-Civita connection. The action reads
then

S = SEH(gµν , Γ̂
λ
µν) + SM (gµν ,Ψ)

=

∫
d4x

√
−g

[
1

2
R̂+ LM (gµν ,Ψ)

]
. (2.31)

The matter action does not depend on the independent connection Γ̂λµν . This
is a specific postulate of Palatini variational method. Allowing the action
for this dependence will lead to yet another formulation, namely the metric-
affine variation, which in general implies some deviation from GR itself. We
will not discuss the metric-affine variational principle since it would lead
us toward arguments completely dissociated from the main scopes of this
work10. We remain inside the framework of Palatini variation, considering
the matter action indipendent from Γ̂λµν .

Varying the action (2.31) with respect to gµν gives

δgS =
1

2

∫
d4x

√
−g

(
R̂µν −

1

2
gµνR̂− Tµν

)
δgµν , (2.32)

from which we read off the following equations of motion11

R̂(µν) −
1

2
gµνR̂ = Tµν . (2.33)

Note that in the Palatini approach the Ricci tensor is a function of Γ̂λµν
alone. This means that the boundary terms coming from the variation of
Rµν with respect to gµν we had in the metric formulation, no longer appears
here. They belong to the variation with respect to Γ̂λµν now. We also stress
that these are not the Einstein field equation (2.30). Although the form
of the equations is the same, the connection enter in eq. (2.33) is not the
Levi-Civita connection.

10For the reader interested in this subject we cite [HK78, HLS81].
11Note that R̂µν has not to be symmetric as Rµν . This happens because the Riemann

tensor has less symmetries if the connection is not metric.
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The variation with respect to the independent connection Γ̂λµν gives

δΓS =

∫
d4x

√
−g gµνδR̂µν

=

∫
d4x

√
−g gαβ

(
∇̂λδΓ̂

λ
αβ − ∇̂βδΓ̂

λ
αλ

)
, (2.34)

where we used the Palatini identity (2.19) to compute δR̂µν and denoted by
∇̂ the covariant derivative of Γ̂λµν . Integrating by parts we get

δΓS =

∫
d4x∇̂λ

(√
−g gαβδΓ̂λαβ

)
−
∫
d4x∇̂β

(√
−g gαβδΓ̂λαλ

)
−
∫
d4x

[
∇̂λ

(√
−g gαβ

)
δΓ̂λαβ − ∇̂β

(√
−g gαβ

)
δΓ̂λαλ

]
. (2.35)

In order to proceed the calculation we must recall the definition of tensor
density and how covariant derivatives act on it. A tensor density is a quantity
which transforms as a tensor except for extra multiplicative factors of the
Jacobian. The number of times the Jacobian is multiplied is called the
weight of the tensor density. For example, a (second-rank) tensor density
Fµ

ν of weight W transforms as

F ′µ
ν = JW

∂x′µ

∂xα
∂xβ

∂x′ν
Fα

β , (2.36)

where J is the Jacobian. An important property is that if Fµν...
αβ... is a tensor

density of weight W , then (−g)W/2Fµν...
αβ... is an ordinary tensor12. We can

thus see that all the terms covariantly derived in eq. (2.35) are indeed tensor
densities of weight −1, since multiplication by (−g)−1/2 gives back ordinary
tensors. It still remains to know how covariant derivatives act on tensor
densities. Requiring that the usual properties of differential operators hold
and that the result is still a tensor density of the same weight of the starting
one, the covariant derivatives have to act on tensor densities as

∇ρFαβ...
µν... := (−g)−

W
2 ∇ρ

[
(−g)

W
2 Fαβ...

µν...

]
, (2.37)

where in the right hand side the covariant derivative act as usual on ordinary
tensor. Using this definitions back in eq. (2.35) we get

δΓS =

∫
d4x

√
−g ∇̂λ

(
gαβδΓ̂λαβ

)
−
∫
d4x

√
−g ∇̂β

(
gαβδΓ̂λαλ

)
−
∫
d4x

√
−g

[(
∇̂λg

αβ
)
δΓ̂λαβ −

(
∇̂βg

αβ
)
δΓ̂λαλ

]
. (2.38)

12This follows from the summing properties of tensor densities (weights add up) and
the fact that

√
−g is a tensor density of weight −1.
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Now the first two terms are nothing but total derivatives (with respect to
the invariant measure of integration d4x

√
−g) which vanish thanks to the

Stokes theorem13. Hence the variation with respect to Γ̂λµν gives in the end

δΓS =

∫
d4x

√
−g

(
∇̂λg

αβ − δβλ∇̂σg
ασ
)
δΓ̂λαβ = 0 , (2.39)

which implies

∇̂λg
αβ − δ

(β
λ ∇̂σg

α)σ = 0 , (2.40)

where (αβ) denotes symmetrization with respect to the indeces αβ. We have
to take only the symmetric part since Γ̂λµν is symmetric in µν (torsionless).

Eq. (2.40) is a linear system of 40 equations in the 40 variables ∇̂λg
µν . It

admits the only solution14

∇̂λg
µν = 0 , (2.41)

which implies
∇̂λgµν = 0 . (2.42)

This is nothing but the metric condition (2.5) for Γ̂λµν . Since Γ̂λµν satisfies
both the torsionless and metric conditions, it has to coincides with the Levi-
Civita connection. In brief, this means

Γ̂λµν = Γλµν . (2.43)

The gravitational field equations we have found in the Palatini variation
(eq. (2.33)) becomes then the canonical Einstein field equations

Gµν = Rµν −
1

2
gµνR = Tµν . (2.44)

The theory is then physically the same using either metric or Palatini
variations. The gravitational field equations are indeed the Einstein field
equations in both theories. The major difference is that in the Palatini for-
mulation the metric condition is derived from a variational principle rather
than be imposed a priori as in the metric approach. This means that we have
a postulate less to impose when we decide to take the Palatini variation.

Moreover the Palatini formulation is easier to compare with the well
studied theories of particle physics, where a gauge field (the connection) is
needed to describe interacting fields. Describing gravity as a gauge theory
will probably leads towards a canonical quantization. However, all the de-
tails of this relation are far to be understood and still today the research of
the so called quantum gravity can be regarded as a work in progress.

13See note at page 16.
14A quick way to find the solution is to take the contraction between λ and β (or λ and

α) which gives ∇̂λg
αλ = 0. Substituting this back in eq. (2.40) we obtain immediately

condition (2.41).
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Chapter 3

Modified Actions for Gravity

The present chapter is devoted to introduce some of the most popular the-
ories with the aim of modifying GR: Scalar-Tensor Theories and f(R) The-
ories. First we will treat Scalar-Tensor theories in both metric and Palatini
formulation and we will mention a special case: Brans-Dicke theories. Then
we will analyze f(R) gravity showing how, in both metric and Palatini ap-
proaches, it can be recasted into the form of a particular Brans-Dicke theory.
Finally we will present an unified way to formulate these theories, which will
be named Generalized (Modified) Gravity. This class of theories will con-
tain as subclasses both Scalar-Tensor and f(R) gravity. Thus the result we
will obtain within generalized gravity will hold automatically for these other
theories.

In general for each theory we present the action and derive the equations
of motion. Since doing this every time could become a repetitive work, we
will discuss several details and remarks only in the final section, where we
will treat the generalized approach to modified gravity. In any case, it should
be stressed that all the remarks pointed out there hold also for the theories
discussed previously, inasmuch as they can be seen as particular realizations
of generalized gravity. References to the presented material will be given
troughout the text.

3.1 Scalar-Tensor Theories

In this section we encounter our first modification of the Einstein-Hilbert
action (2.1), which consists in introducing a new scalar field ϕ generally cou-
pled to gravity. The coupling is obtained by an arbitrary function of ϕ which
interacts linearly with the curvature scalar R, whilst its (generalised) kinetic
and potential terms are added as usual. This class of theory goes under the
name of Scalar-Tensor Theories of gravity. Motivations for introducing such
scalar field can be easily found in the literature. As a matter of fact, the
well-known Brans-Dicke Theory [BD61] and the present standard model of

23
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inflation (see chapter 4) are specific examples within this class of theories. In
the following we derive field equations for the general Scalar-Tensor theory
in both metric and Palatini approaches and briefly discuss the Brans-Dicke
case. For further details and applications we refer to [FM03, Far04].

Metric Formulation

The general action for Scalar-Tensor Gravity reads

SST :=

∫
d4x

√
−g

[
1

2
F (ϕ)R− ω(ϕ)

2
(∂ϕ)2 − V (ϕ) + LM

]
, (3.1)

where (∂ϕ)2 := gµν∂µϕ∂νϕ . R and LM are the usual curvature scalar and
matter Lagrangian, respectively. F (ϕ), ω(ϕ) and V (ϕ) are taken to be arbi-
trary general functions of the scalar field ϕ alone. In the metric approach the
field equations are obtained varying action (3.1) independently with respect
to the (inverse) metric tensor gµν and the scalar field ϕ.

The metric variation gives the following gravitational field equations

F Gµν −∇µ∇νF + gµν2F = T (ϕ)
µν + Tµν , (3.2)

where Gµν is the common Einstein tensor and 2 = gµν∇µ∇ν . Tµν is the
energy-momentum tensor derived from the matter Lagrangian LM as given

by (2.29) and T
(ϕ)
µν is the scalar field energy-momentum tensor defined by

T (ϕ)
µν := ω∇µϕ∇νϕ− gµν [

1

2
ω(∂ϕ)2 + V (ϕ)] . (3.3)

Eq. (3.2) is clearly different from the canonical Einstein field equations
(2.30). The coupling function F (ϕ) and its (covariant) derivatives appear
explicitly in the right hand side, while the scalar field energy-momentum ten-
sor is added to the usual Tµν . We note that the new gravitational coupling,
rather than being constant as in canonical GR (the Newton constant), is now
parametrized by ϕ through the function F . This means that the gravita-
tional ”constant” depends now, through the scalar field ϕ, by the spacetime
event considered. This is more explicit if we rewrite eq. (3.2) as

Gµν =
1

F

(
T (ϕ)
µν + Tµν + T (F )

µν

)
, (3.4)

with
T (F )
µν := ∇µ∇νF − gµν2F . (3.5)

Variation of action (3.1) with respect to the scalar field ϕ gives the
following modified Klein-Gordon (KG) equation

2ϕ+
1

2ω
(ω,ϕ∇µϕ∇µϕ− 2V,ϕ + F,ϕR) = 0 , (3.6)
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where ,ϕ means differentiation with respect to ϕ. We note that choosing
F = ω = 1, in which case action (3.1) becomes the Einstein-Hilbert action
minimally coupled with the canonical scalar field ϕ, eq. (3.2) and eq. (3.6)
turn out to be the GR Einstein field equations (with a scalar matter field
energy-momentum tensor) and the usual KG equation

2ϕ− V,ϕ = 0 . (3.7)

The equation of motion for the scalar field (3.6) turns out to be coupled
with the gravitational field equations (3.2) also through R, instead of be-
ing coupled only via gµν . However we can easily eliminate R in eq. (3.6)
considering the trace of eq. (3.2) which gives

R =
1

F

(
32F − T (ϕ) − T

)
, (3.8)

where T (ϕ) and T are the traces of T
(ϕ)
µν and Tµν , respectively. In this

manner, once given the metric tensor, the (modified) KG are decoupled
from the modified Einstein equations.

Palatini Formulation

It is also possible to treat Scalar-Tensor gravity within the Palatini approach.
Finding equations of motion is more complicated in the Palatini case than
in the metric case. This is due to the simultaneous variation with respect
to the metric gµν and the independent (torsionless) connection Γ̂λµν . First
of all we must rewrite action (3.1) underlining the explicit dependences by
gµν or Γ̂λµν . We have

SST :=

∫
d4x

√
−g

[
1

2
F (ϕ)R̂− ω(ϕ)

2
(∂ϕ)2 − V (ϕ) + LM (gµν ,Ψ)

]
, (3.9)

where now the curvature scalar is composed solely by the independent con-
nection Γ̂λµν and marked with an overhat1: R̂ := gµνR̂µν . The matter La-

grangian does not depend on Γ̂λµν according to the Palatini prescription.
An independent variation with respect to the metric gµν , the connection

Γ̂λµν and the scalar field ϕ gives, respectively,

F

(
R̂(µν) −

1

2
R̂ gµν

)
= T (ϕ)

µν + Tµν ; (3.10)

∇̂µ

(√
−ggαβF

)
− δ(βµ ∇̂σ

(√
−ggα)σF

)
= 0 ; (3.11)

∇̂µ∇̂µϕ+
1

2ω

(
ω,ϕ∂

µϕ∂µϕ− 2V,ϕ + F,ϕR̂
)
= 0 . (3.12)

1See section 2.3.



26 Chapter 3

As we did in the metric case we can substitute R̂ in eq. (3.12) as given from
the trace of eq. (3.10)

R̂ = −T
(ϕ) + T

F
, (3.13)

in order to decouple the KG equation. Moreover, in analogy to eq. (2.40),
eq. (3.11) is a system of 40 equations in the 40 variables ∇̂µ(

√
−ggαβF )

which admits the unique solution

∇̂µ

(√
−ggαβF

)
= 0 . (3.14)

At this point we define a new metric hµν conformally connected to gµν
with conformal factor F

hµν := F gµν . (3.15)

In terms of this new metric condition (3.14) reads

∇̂µ

(√
−hhαβ

)
= 0 , (3.16)

which implies

∇̂µhαβ = 0 . (3.17)

This is nothing but the metric condition (2.5) for the connection Γ̂λµν with

respect to the metric hµν . Since Γ̂
λ
µν was assumed to be torsionfree from the

beginning, it turns out to be the Levi-Civita derivative with respect to hµν

Γ̂λµν =
1

2
hλσ(hνσ,µ + hµσ,ν + hµν,σ) , (3.18)

which we can also rewrite in terms of F and gµν as

Γ̂λµν = Γλµν +
1

2F

[
2δλ(µ∂ν)F + gµνg

λσ∂σF
]
, (3.19)

with Γλµν denoting the usual Levi-Civita connection formed with gµν . This

result tells us that the independent connection Γ̂λµν can be substituted when-

ever it appears in our equations in favour of Γλµν . In particular eqs. (3.10)
and (3.12) become

F Gµν +
3

2F
(∇µF )(∇νF )−∇µ∇νF

−1

2
gµν

[
(1− 3

F
)∇σ∇σF +

3

2F
(∇σF )(∇σF )

]
= T (ϕ)

µν + Tµν ; (3.20)

2ϕ− 1

3F
∂µϕ∂µF +

1

2ω

[
ω,ϕ∂

µϕ∂µϕ− 2V,ϕ −
F,ϕ
F

(T (ϕ) + T )

]
= 0 . (3.21)
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The modified gravitational field equations (3.20) can be written, as we did
in the metric case, in the (canonical) form of eq. (3.4) defining a new energy-
momentum tensor as

T (F )
µν := − 3

2F
(∇µF )(∇νF ) +∇µ∇νF

+
1

2
gµν

[
(1− 3

F
)∇σ∇σF +

3

2F
(∇σF )(∇σF )

]
. (3.22)

which depends by ϕ through the function F .

If we compare the Palatini equations of motion (3.20) and (3.21) with
the corresponding metric equations (3.2) and (3.6), or better the two energy-

momentum tensors T
(F )
µν given by eqs. (3.5) and (3.22), we notice that in the

Palatini formulation of the theory more terms, depending on the modifying
function F , appear. This means that, unlike in GR, the two formalisms do
not lead to the same theory. They imply different equations of motion and
consequently different physical results. This is an important point meaning
that the two approaches are not just two distinguished mathematical formu-
lations of the same theory, but correspond indeed to two different physical
theories.

Brans-Dicke Theory

The most famous example of Scalar-Tensor Theory is Brans-Dicke Theory.
We briefly discuss here some aspects of this theory since it will be of interest
later on. The following analysis is performed uniquely in the metric approach
since this is the natural and more studied formulation of the theory, and,
consequently, the results we need have been obtained whitin this framework.

In Brans-Dicke Theory we set2

F (ϕ) = ϕ and ω(ϕ) =
ω0

ϕ
, (3.23)

with the constant ω0 called the BD parameter. The Brans-Dicke action
reads then

SBD :=

∫
d4x

√
−g

[
1

2
ϕR− ω0

2ϕ
(∂ϕ)2 − V (ϕ) + LM (gµν ,Ψ)

]
. (3.24)

Since the BD parameter multiply the kinetic term of the scalar field, it plays
an important role in the theory and many possible values of it has been
considered in the past. As we will see later, it will be of crucial importance
in identify different modified gravity theories.

2The first model proposed in [BD61] considered also V (ϕ) = 0. However, for our
purposes, the potential is taken arbitrary.
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Independent variation with respect to gµν and ϕ gives the following equa-
tions of motion

Gµν =
1

ϕ
T (tot)
µν ; (3.25)

2ω0

ϕ
2ϕ− ω0

ϕ2
(∂ϕ)2 − 2V,ϕ +R = 0 ; (3.26)

with T
(tot)
µν = T

(ϕ)
µν + Tµν + T

(F )
µν , and where in this case

T (F )
µν = ∇µ∇νϕ− gµν2ϕ . (3.27)

From eq. (3.25) is evident the purpose of the original Brans-Dicke model
[BD61]. The gravitational coupling depends now on the scalar field ϕ. This
is exactly the mechanism they found for building a gravitational theory
respecting the Mach’s principle.

Brans-Dicke theory has been considered the most promising alternative
to GR for long time. This means that we can find a huge amount of works
in the literature which treated the theory under several point of views. In
particular for what concerns our aims, some of the theoretical results al-
ready derived for this theory can be also applied to other theories which can
somehow be regarded as equivalents to Brans-Dicke Theory.

3.2 Higher-order Gravity

Introducing a scalar field in the action is not the only way to modify gravity.
However, considering other kinds of field, such as spinor or vector fields, can
be regarded as a generalization of the scalar field idea with the only inten-
tion to complicate things. Models where new vectors and tensors couple to
gravity has been well studied (TeVeS for example), but the main cosmolog-
ical observations can usually be better explained within the simpler scalar
field modification or within the ΛCDM model frameworks. For this reason
we will not discuss introductions of other kinds of field in the remaining part
of this work.

A possible and straightforward modification of GR, without resort to
other fields, consists to include in the Einstein-Hilbert action more curvature
invariants in addition to R. These invariants are solely constructed with gµν
and its derivatives and do not rely on any other field. They can be derived
contracting the Riemann tensor in every possible way. For instance we
can form the invariants RµνR

µν and RµναβR
µναβ , or even consider strange

contractions such as3 RµναβRµαRνβ . Invariants constructed with the Weyl
tensor Cµναβ can also be considered, such as CµναβC

µναβ . In general all

3The combination RµναβRµνRαβ vanishes because of the symmetry properties of the
Riemann tensor.
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the possible contractions of the Riemann tensor with itself and the metric
gµν can be considered in building such invariants. These invariants however
introduce in the action more derivatives with respect to the metric tensor
and for this reason the resulting theories are called higher-order theories of
gravity.

A specific combination one can makes is the so called Gauss-Bonnet
invariants

G := R2 − 4RµνRµν +RµναβRµναβ . (3.28)

Models considering this invariant in order to create some deviations from
GR are collected under the name of Gauss-Bonnet Gravity. This class of
theories is expecially studied as a possible low energy limit of String Theory
(see for example [Tse96]). The most important feature of the scalar G is
that it is a topological invariant (in four dimensions), i.e. connected to the
Euler characteristic which determines the topology of the manifold. For our
purposes, however, what is of interest is that the variation of

√
−g G with

respect to gµν is zero. This means that we can always add a linear4 term
in G to the Lagrangian without affecting the equations of motion. In this
manner we can replace an eventual RµναβR

µναβ modification in favour of
terms containing only R2 and RµνRµν . As a result, we can write the most
general action linear in second-order curvature invariants as5

S =
1

2

∫
d4x

√
−g

(
R+ aR2 + bRµνRµν

)
, (3.29)

where a, b are two coefficients of suitable dimensions. The theory described
by this action is referred to as fourth-order gravity and has been studied
extensively in the literature with some interesting results (see [Sch07] for a
review).

It is also possible to include in the action derivatives of the mentioned
invariants, such as 2R. However the differential order of the field equations
is increased as one adds higher derivative terms. More are the derivatives
in the action, higher is the order of field equations. In general for every one
order increase in the action one gains a two order increase in the equations
of motion. So, for example, the R term leads to second-order field equations,
the R2 term to fourth order, R2R to sixth order and R22R to eighth order.
It seems then not convenient to add too many derivatives in the action if we
want to keep the field equations at the lowest differential orders.

4Non linear terms in G are not in general total divergences.
5Actually this is the most general second-order action only in the metric formalism.

In the Palatini approach the Ricci tensor Rµν is not the only secon-rank tensor we can
form contracting the Riemann tensor. The Kµ

β := gναRµνα
β contraction is in fact not

equivalent to Rµν := Rµαν
α since now the connection does not satisfy the metric condition

(2.5). In principle the most general Palatini second-order lagrangian should also contain
terms as Kµ

νKν
µ or RµνK

µν .
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In what follows we will not discuss modification to the Einstein-Hilbert
action given by other invariants beyond the curvature invariants R. This
means that the only new terms we will face with will be just functions of R.
However, we will in general allow the lagrangian to be an arbitrary function
f(R) of the curvature scalar. The corresponding class of theories has been
called f(R) gravity for obvious reasons.

The drastic decision we make has two main explanations. First of all
there is enough simplicity: actions based only on f(R) modification are
sufficiently general to encapsulate some of the basic features of higher-order
gravity, but at the same time they are simple enough to be easy handle. This
is why f(R) theories make excellent candidates for toy-theories, from which
we can gain some insight into such gravity modifications. Second, there are
serious reason to believe that f(R) theories are unique among higher-order
gravity theories, in the sense that they seem to be the only ones able to
avoid the long known and fatal Ostrograndski instability [Woo07].

3.3 f(R) Theories in Metric Approach

In this section we present the metric formulation of f(R) gravitational the-
ories. First we will write the general f(R) action and derive equations of
motion. Then we will show how metric f(R) gravity can be recasted in
the form of a Brans-Dicke theory via some conformal transformations. The
issues outlined in the present section, and much more details, can be found
in general reviews as [DT10] or [SF10].

Action and Field Equations

In f(R) theories of gravity the Einstein-Hilbert action (2.1) is modified
considering an arbitrary function f of the curvature scalar R:

S :=
1

2

∫
d4x

√
−gf(R) . (3.30)

Taking into account also the matter Lagrangian, the general action we must
work with reads

Sf(R) :=

∫
d4x

√
−g

[
1

2
f(R) + LM (gµν ,Ψ)

]
, (3.31)

where as usual Ψ denotes all the matter fields collectively.
Varying action (3.31) with respect to the metric gµν provides the follow-

ing gravitational field equations6

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF (R) + gµν2F (R) = Tµν , (3.32)

6Some issues regarding surface terms will be discussed in section 3.5.
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where Tµν is the matter energy-momentum tensor (2.29) and where we have
defined7

F (R) :=
∂f(R)

∂R
. (3.33)

In order to recover GR we just have to set f(R) = R, in which case F (R) = 1
and eq. (3.32) reduces to the canonical Einstein field equations (2.30).

The trace of eq. (3.32) is

F (R)R− 2f(R) + 32F (R) = T . (3.34)

This equation relates R with T differentially and not algebraically as in GR,
where R = −T , or in Scalar-Tensor gravity, eq. (3.8). This is an indication
that the field equations of f(R) theories will admit a larger variety of solution
than Einstein’s theory. Without going into details, let us just mention that
T = 0 no longer implies that R = 0, or even constant. Moreover, as we will
see, the appearence of the term 2F implies there is a propagating scalar
degree of freedom more than in GR.

Finally we note that is possible to write the gravitational field equation
(3.32) in the canonical form

Gµν = Tµν + T (f)
µν (3.35)

defining the effective energy-momentum tensor depending by f(R) as

T (f)
µν :=

1

2
gµν [f(R)−R]+∇µ∇νF (R)−gµν2F (R)+[1− F (R)]Rµν , (3.36)

which clearly vanishes for f(R) = R.

Equivalence with Brans-Dicke Theories

Now we show how metric f(R) gravity can be regarded as equivalent to some
particular Brans-Dicke theory using the tool of field manipulations, which
consists generally in redefining, introducing or trasforming fields appearing
in the action. We state that two theories are dynamically equivalent if,
under a suitable redefinition of the involved fields, one can make their field
equations coincide8.

With this definition two dynamically equivalent theories can be regarded
just as different representations of the same theory. The issue of distinguish-
ing between truly different theories and different representations of the same
theory is an intricate one, expecially when conformal transformations are
used in order to redefine the fields. It goes beyond the scope of the present
work to analyze in depth this issue and we refer to [SFL08] and references

7Mind to not confuse F (R) given here with F (ϕ) defined in section 3.1. The choice of
this little abuse of notation will become clear in section 3.5.

8This stetement holds only within a classical perspective.



32 Chapter 3

therein for a detailed discussion. Here we simply mention that, given that
they are handled carefully, field redefinitions and different representations
of the same theory constitute useful tools for understanding gravitational
theories.

Having pointed out these premises, we present how the identification
between f(R) gravity and Brans-Dicke theories takes place. We start from
the f(R) action (3.31) and introduce a new scalar field σ. Then we write
the action

S =
1

2

∫
d4x

√
−g

[
f(σ) + f ′(σ)(R− σ)

]
+ SM (gµν ,Ψ) , (3.37)

where f is the same function as in action (3.31) and a prime denotes dif-
ferentiation with respect to σ9. Variation with respect to σ leads to the
equation

f ′′(σ)(R− σ) = 0 , (3.38)

which, imposing the condition f ′′(σ) ̸= 0, gives R = σ. Substituting this re-
sult into action (3.37) reproduces action (3.31) showing that the two theories
are indeed dynamically equivalent10.

Redefining the field σ by ϕ := f ′(σ), action (3.37) becomes

S =

∫
d4x

√
−g

[
1

2
ϕR− V (ϕ)

]
+ SM (gµν ,Ψ) , (3.39)

where we have setted

V (ϕ) :=
1

2
[σ(ϕ)ϕ− f(σ(ϕ))] . (3.40)

Action (3.39) is nothing but a Brans-Dicke action (3.24) with non-vanishing
potential and BD parameter ω0 = 0. What we have just demonstrated is
the dynamical equivalence between metric f(R) gravity and the ω0 = 0
Brans-Dicke theory.

Before ending the section, we write down the equations of motion for this
theory. Varying action (3.39) with respect to gµν and ϕ provides respectively

Gµν =
1

ϕ
[Tµν − gµνV (ϕ) +∇µ∇νϕ− gµν2ϕ] ; (3.41)

R = 2V ′(ϕ) ; (3.42)

In order to replace R into eq. (3.42) we can take the trace of eq. (3.41). We
get

32ϕ+ 4V (ϕ)− 2ϕV ′(ϕ) = T , (3.43)

9In this (and the following) section we use a prime to denote differentiation with respect
to the only showed argument. For example, y′(x) means the derivative of the function y
with respect to the variable x.

10The same analysis could be performed at the level of the equations of motion.
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which determines the dynamics of ϕ for given matter sources.

We can now clarify why metric f(R) gravity has a dynamical scalar
degree of freedom more than GR. In the Brans-Dicke representation the issue
is more transparent since this new degree of freedom is naturally represented
by the scalar field ϕ. The absence of a kinetic term for ϕ in the action (3.39)
or in eq. (3.42) should not mislead us to think that this degree of freedom
does not carry dynamics. As we can realize by eq. (3.43), ϕ is dynamically
related to the matter source and, therefore, it is a dymanical degree of
freedom. Finally, we notice that eq. (3.42) constrains the dynamics of ϕ
implying that f(R) gravity, in its ω0 = 0 Brans-Dicke form, differs from the
general (free) Brans-Dicke theory and then constitutes a special case of such
theory.

3.4 f(R) Theories in Palatini Approach

As in Scalar-Tensor theories, the Palatini formulation of f(R) gravity is more
complicated than the corresponding metric case. In this section we will see
how the Palatini variation of f(R) theories brings to consistent gravitational
field equations and how, in analogy with the metric formulation, we can
recast it in the form of a specific Scalar-Tensor theory. Again, we refer to
the extensive reviews [DT10, SF10] for more details.

Field Equations

In Palatini f(R) gravity f is function of R̂ rather than of the canonical
curvature scalar R. The action then (including matter) reads

Sf(R) :=

∫
d4x

√
−g

[
1

2
f(R̂) + LM (gµν ,Ψ)

]
. (3.44)

Independent variation with respect to gµν and Γ̂λµν gives respectively

F (R̂)R̂(µν) −
1

2
f(R̂)gµν = Tµν ; (3.45)

∇̂λ

(√
−gF (R̂)gµν

)
− ∇̂σ

(√
−gF (R̂)gσ(µ

)
δ
ν)
λ = 0 ; (3.46)

where ∇̂µ is the covariant derivative with respect to Γ̂λµν and

F (R̂) :=
∂f(R̂)

∂R̂
. (3.47)

Imposing f(R̂) = R̂ equations (3.45) and (3.46) reduce to the corresponding
canonical ones (2.33) and (2.40), respectively. According to the arguments
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of section 2.3 we can then find in this case the usual Einstein field equations
(2.30), which means that GR can be consinstently recovered.

If we take the trace of eq. (3.45) we get

F (R̂)R̂− 2f(R̂) = T . (3.48)

Putting a part for a moment the difference between R and R̂, we can qual-
itatively compare eq. (3.48) with eq. (3.34). We notice that in the Palatini
case the dynamical term 2F does not appear. This is an early indication
that, unlike the metric case, Palatini f(R) gravity does not contain any
further scalar degree of freedom than GR. As it happened for the metric
formulation, this issue, which will be of central importance in the results of
chapter 6, will be clearer within the Scalar-Tensor representation of f(R)
gravity.

Again, in analogy with eq. (2.40), eq. (3.46) implies

∇̂λ

(√
−gF (R̂)gµν

)
= 0 . (3.49)

Following the same procedure we made for Palatini Scalar-Tensor gravity,
we define a new metric hµν conformally connected to gµν by

hµν := F (R̂)gµν . (3.50)

Eq. (3.49) becomes then

∇̂µ

(√
−hhαβ

)
= 0 , (3.51)

which implies the metric condition for Γ̂λµν with the metric hµν , that is

∇̂µhαβ = 0 . (3.52)

The independent connection Γ̂λµν becomes then the Levi-Civita connection
with respect to hµν and can be written as

Γ̂λµν =
1

2
hλσ(hνσ,µ + hµσ,ν + hµν,σ)

= Γλµν +
1

2F

[
2δλ(µ∂ν)F + gµνg

λσ∂σF
]
. (3.53)

We can now use this relation in order to replace Γ̂λµν into the gravitational
field equations (3.45). The result is

F Rµν −
1

2
gµνf +

3

2F
(∇µF )(∇νF )−∇µ∇νF

−1

2
gµν

[
(1− 3

F
)∇σ∇σF +

3

2F
(∇σF )(∇σF )

]
= Tµν , (3.54)
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which can again be recasted in the canonical form Gµν = Tµν+T
(f)
µν defining

the effective energy-momentum tensor

T (f)
µν = (1− F )Rµν −

3

2F
(∇µF )(∇νF ) +∇µ∇νF

+
1

2
gµν

[
(f −R) + (1− 3

F
)∇σ∇σF +

3

2F
(∇σF )(∇σF )

]
. (3.55)

Finally, comparing this result with the corresponding result in the metric
case (3.36) we see that also in the f(R) theories of gravity the Palatini
and metric formulations correspond to different theories rather than two
different representations of the same theory. This is evident at the level of
the equations of motion where we find more modifying terms considering
the Palatini variation rather than the metric one.

Equivalence with Brans-Dicke Theories

In the same way metric f(R) gravity is dynamically equivalent to a ω0 = 0
Brans-Dicke theory, the Palatini formulation of f(R) theories has its cor-
responding equivalent among Brans-Dicke theories. The demonstration is
similar to the one we presented in the metric case. We introduce the scalar
field σ and write the action

S =
1

2

∫
d4x

√
−g

[
f(σ) + f ′(σ)(R̂− σ)

]
+ SM (gµν ,Ψ) , (3.56)

which is dynamically equivalent to (3.44) (again only if f ′′(σ) ̸= 0). Replac-
ing the scalar field σ with ϕ := f ′(σ) yields to the the action

S =

∫
d4x

√
−g

[
1

2
ϕR̂− V (ϕ)

]
+ SM (gµν ,Ψ) , (3.57)

where the potential V (ϕ) is defined exactly as in (3.40).
Even though this action is formally the same of (3.39), it does not corre-

spond to a Brans-Dicke theory with ω0 = 0 since R̂ is clearly not equivalent
to R. However, exactly as we have done with the gravitational field equa-
tions, we can replace Γ̂λµν in favour of Γλµν into action (3.57). In this manner
we have

R̂ = R+
3

2ϕ2
(∂ϕ)2 +

3

ϕ
2ϕ , (3.58)

and we can rewrite action (3.57) (modulo surface terms) as

S :=

∫
d4x

√
−g

[
1

2
ϕR+

3

4ϕ
(∂ϕ)2 − V (ϕ)

]
+ SM (gµν ,Ψ) . (3.59)

This is exactly the action of a Brans-Dicke theory with BD parameter ω0 =
−3/2, which means we have succeeded in recasting Palatini f(R) gravity
in the form of a Brans-Dicke theory. However, unlike the metric case, now
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the BD parameter does not vanish and, as a consequence, the kinetic term
appears explicitly into action (3.59).

The corresponding field equations of action (3.59) are obtained varying
independently with respect to gµν and the scalar ϕ:

Gµν =
1

ϕ
[Tµν − gµνV (ϕ) +∇µ∇νϕ− gµν2ϕ]

− 3

2ϕ2

[
∇µϕ∇νϕ− 1

2
gµν∇λϕ∇λϕ

]
; (3.60)

2ϕ =
ϕ

3

[
R− 2V ′(ϕ)

]
+

1

2ϕ
∇µϕ∇µϕ . (3.61)

Comparing these equations with the corresponding ones in the metric case,
eq. (3.41) and eq. (3.42), we immediatly note that in the Palatini case several
more terms appear. This is due to the non vanishing of the BD parameter
ω0, which assumes the value ω0 = −3/2.

In particular, eq. (3.61) is completely different from eq. (3.42) and seems
to provide some dynamics for ϕ, which is further confirmed by the kinetic
term now appearing in action (3.59). However, once again this is misleading.
We can convince ourself taking the trace of eq. (3.60) in order to replace R
in eq. (3.61). The result is

4V (ϕ)− 2ϕV ′(ϕ) = T . (3.62)

From this equations it is clear that ϕ is in this case algebraically related to
the matter source and, therefore, it carries no dynamics of its own. It is
indeed possible to eliminate ϕ from the equations of motion combinig equa-
tions (3.60) and (3.62), the resulting field equations correspond to eq. (3.54).
Thus, the Palatini formulation of f(R) gravity has the same dynamical de-
grees of freedom as GR. In this case, the scalar degree of freedom arising in
the metric case, and represented by ϕ, is absent. Using the Palatini formal-
ism the scalar field ϕ, appearing in the equivalent Brans-Dicke formulation
of the theory, plays the only role of an auxiliary field since it can be elim-
inated from the final form of the field equations. This crucial difference
between the metric and Palatini formulation of f(R) gravity will be of rel-
evant importance in the physical observables we will compute in chapters 5
and 6.

3.5 Generalized Gravity

In this section we present a completely general modification of the Einstein-
Hilbert action which includes as subclasses both Scalar-Tensor and f(R)
theories. In this case, the deviation from GR is given by an arbitrary func-
tion depending on both the curvature scalar R and a scalar field ϕ. We
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will name this theory with the appellative of Generalized Gravity in order to
denote the general modifying character of the theory. There are no specific
reviews throughout the literature interely dedicated to this subject. How-
ever, the basic elements can be found in some works analyzing applications
of the theory to cosmological perturbations. References to them will be
given separately for metric and Palatini formulations.

The following analysis is performed more carefully than in the previous
sections, though not so pedagogical as in chapter 2, and more technical
details are discussed. The reason why we have not done this before is that
both Tensor-Scalar and f(R) theories can be considered specific examples
within the wider class of generalized gravity. In this sense any results valid
for generalized gravity must also hold for the two subclasses of theories.
The remarks pointed out here can thus be equally applied to the previous
theories.

Metric Formulation

In this section we analyze generalized gravity within the metric formalism.
We derive equations of motion and discuss some important remarks. What
follows can be found, though in less details, in [Hwa96, CF08].

We write the action of (metric) generalized gravity in the following form

SGG =

∫
d4x

√
−g

[
1

2
f(R,ϕ)− 1

2
ω(ϕ)(∂ϕ)2 − V (ϕ) + LM (gµν ,Ψ)

]
,

(3.63)
where f(R,ϕ) is a general function of both the curvature scalar R and the
scalar field ϕ, while ω(ϕ), V (ϕ) are arbitrary functions of ϕ and (∂ϕ)2 :=
gµν∂µϕ∂νϕ. LM is the usual matter Lagrangian depending only by gµν and
all the matter fields Ψ. Reductions to Scalar-Tensor or f(R) theories are
obtained setting f(R,ϕ) = F (ϕ)R or ϕ = 0, respectively. In order to simplify
the following equations we define

F (R,ϕ) :=
∂f(R,ϕ)

∂R
. (3.64)

We can now justify the abuse of notation used in the previous sections.
According to definition (3.64), the functions F (R,ϕ) reduces to F (ϕ) in the
Scalar-Tensor gravity case (where f(R,ϕ) = F (ϕ)R) and to F (R) = f ′(R)
in the f(R) gravity case (where f(R,ϕ) = f(R)).

The equations of motion are obtained varying independently with respect
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to gµν and ϕ. We obtain11

FRµν −
1

2
fgµν −∇µ∇νF + gµν2F = T (ϕ)

µν + Tµν ; (3.66)

2ϕ+
1

2ω
(ω,ϕ∇µϕ∇µϕ− 2V,ϕ + f,ϕ) = 0 ; (3.67)

where Tµν is the usual matter energy-momentum tensor (2.29) and ,ϕ means
differentiation with respect to ϕ. The scalar field energy-momentum tensor
is defined as in (3.3), i.e.

T (ϕ)
µν := ω∇µϕ∇νϕ− gµν [

1

2
ω(∂ϕ)2 + V (ϕ)] . (3.68)

Once again the modified Klein-Gordon equation (3.67) turns out to de-
pend on the curvatur scalar R through the modifying function f(R,ϕ).
We can still substitute R into eq. (3.67) taking a solution of the trace of
eq. (3.66), which reads

FR− 2f + 32F = T (ϕ) + T . (3.69)

Eq. (3.69) is now a differential equation in R instead of being an algebraic
relation connectiong R to the matter (and ϕ) as it happens in Scalar-Tensor
gravity (see eq. (3.8)) or in GR. The situation is similar to the one we
encountered in f(R) theories (see eq. (3.34)). In general this means that
it will be more difficoult to decouple the two field equations and that the
gravitational field equations (3.66) will admit a wider class of solution than
GR.

Finally we can rewrite the gravitational field equations (3.66) in the
canonical form

Gµν = T (ϕ)
µν + Tµν + T (f)

µν , (3.70)

defining the effective energy momentum tensor

T (f)
µν :=

1

2
gµν (f −R) +∇µ∇νF − gµν2F + (1− F )Rµν . (3.71)

11In this variation we get the surface term∫
∂V

d3x
√

|k|F (R, ϕ) δK , (3.65)

which, unlike in the variation of the Einstein-Hilbert action (see note 7 at page 16), is not
the total variation of a quantity, due to the presence of F (R,ϕ). This means that it is
not possible to ”heal” the action just by subtracting some surface term before making the
variation. The way out comes by notice that action (3.63) includes higher-order derivatives
of the metric and therefore it is possible to fix more degrees of freedom on the boundary
than those of the metric itself. By setting these degrees of freedom and the scalar field to
vanish on the boundary, it is then possible to make the surface term going to zero.
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We should mention that interpreting T
(f)
µν as an energy-momentum tensor

could be measleading. Although the covariant conservation of T
(f)
µν follows

from the covariant conservations of Gµν , Tµν and T
(ϕ)
µν , the effective energy

density derived from T
(F )
µν is not positive-defined and none of the energy

conditions holds. However it could turn out useful when one considers ap-

plications to cosmology since T
(f)
µν can be put into the form of a perfect fluid

energy-momentum tensor.

Palatini Formulation

We now repeat the same analysis for generalized gravity in the Palatini for-
mulation. The following presentation is taken, and expanded, from [TC10].
For an alternative reference see [KK06].

We begin rewriting action (3.63) within the Palatini formulation, where
the connection is considered completely independent from the metric,

SGG =

∫
d4x

√
−g

[
1

2
f(R̂, ϕ)− 1

2
ω(ϕ)(∂ϕ)2 − V (ϕ) + LM (gµν ,Ψ)

]
.

(3.72)
As before, R̂ represents the curvature scalar composed with the independent
connection Γ̂λµν .

Independent variation with respect to the metric gµν , the connection Γ̂λµν
and the scalar field ϕ gives, respectively,

F (R̂, ϕ)R̂µν −
1

2
f(R̂, ϕ)gµν = Tµν + T (ϕ)

µν ; (3.73)

∇̂µ

[√
−g F (R̂, ϕ) gαβ

]
− δ(βµ ∇̂σ

[√
−g F (R̂, ϕ) gα)σ

]
= 0 ; (3.74)

∇̂µ∇̂µϕ+
1

2ω

[
ω,ϕ∂

µϕ∂µϕ− 2V,ϕ + f(R̂, ϕ),ϕ
]
= 0 . (3.75)

We stress that the covariant derivative ∇̂ is taken with respect to the inde-
pendent connection Γ̂λµν , whilst the usual Levi-Civita covariat derivative is
denoted with ∇.

Once given the form of the function f , we can obtain R̂ from the trace
of eq. (3.73),

F (R̂, ϕ)R̂− 2f(R̂, ϕ) = T + T (ϕ) , (3.76)

and replace it into eq. (3.75). In this manner eq. (3.75) will result coupled
to gravity only through the metric gµν and will not depend on the curvature
scalar R̂. Note that eq. (3.76) relates R̂ to the matter sources algebraically
and not differentially as it happens within the metric formulation.

We now focus on eq. (3.74). Exactly as we noticed in canonical GR
(see eq. (2.40)), this constitutes a system of 40 equations in the 40 variables
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∇̂µ

[√
−g F (R̂, ϕ) gαβ

]
which admits the only solution12

∇̂µ

[√
−g F (R̂, ϕ) gαβ

]
= 0 . (3.77)

We now define a new metric hµν conformally connected to gµν by

hµν := F (R̂, ϕ)gµν , (3.78)

in terms of which eq. (3.77) reads

∇̂µ

(√
−hhαβ

)
= 0 . (3.79)

This implies13

∇̂λhµν = 0 , (3.80)

which is nothing but the metric condition (2.5) for the connection Γ̂λµν with

respect to the metric hµν . We can then write Γ̂λµν as

Γ̂λµν =
1

2
hλσ(hνσ,µ + hµσ,ν + hµν,σ) , (3.81)

which, using the definition of hµν (3.78), becomes

Γ̂λµν = Γλµν +
1

2F

[
2δλ(µ∂ν)F + gµνg

λσ∂σF
]
, (3.82)

where Γλµν is the usual Levi-Civita connection with respect to gµν (eq. (2.4)).
Note that the functions F appearing on the right hand side of eq. (3.82) still
depend on R̂. However, we can always replace R̂ in F taking a solution
of eq. (3.76) once the form of f(R̂, ϕ) is given. We can then replace Γ̂λµν in

favour of Γλµν and matter whenever it appears in our equations. In this sense

we can say that Γ̂λµν plays the role of an auxiliary field since in principle it
can be eliminated from the final form of the field equations.

We now use eq. (3.82) to replace Γ̂λµν into eq. (3.73) and eq. (3.75). For
this scope, and also because it will turn out useful later on, we need to
rewrite the hatted Ricci tensor,

R̂µν = Rµν +
3

2F 2
(∇µF )(∇νF )−

1

F
∇µ∇νF − 1

2F
gµν∇σ∇σF , (3.83)

from which follows the hatted curvature scalar,

R̂ = R− 3

F
∇µ∇µF +

3

2F 2
(∇µF )(∇µF ) . (3.84)

12To find this solution just take the trace and replace the result into eq. (3.74).
13To obtain eq. (3.80) from (3.79) we must specify how ∇̂µ acts on tensor densities.

This is defined exactly as eq. (2.37) but with g substituted by h. Remind that hµν is the
inverse tensor (matrix) of hµν .
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The gravitational field equations can then be written as

F Rµν −
1

2
gµνf +

3

2F
(∇µF )(∇νF )−∇µ∇νF

−1

2
gµν

[
(1− 3

F
)∇σ∇σF +

3

2F
(∇σF )(∇σF )

]
= Tµν + T (ϕ)

µν , (3.85)

which can be putted into the canonical form

Gµν = Tµν + T (ϕ)
µν + T (f)

µν , (3.86)

defining

T (f)
µν = (1− F )Rµν −

3

2F
(∇µF )(∇νF ) +∇µ∇νF

+
1

2
gµν

[
(f −R) + (1− 3

F
)∇σ∇σF +

3

2F
(∇σF )(∇σF )

]
. (3.87)

We stress that F is still function of R̂ in the equations of motion. However,
as said above, once one knows the root of eq. (3.76), F becomes function
only of the matter sources. In this sense, looking at eq. (3.86), the theory
can be brought to the form of GR with a modified source.

Finally we notice that the Palatini gravitational equations (3.86) are
different from the correspondig equations within the metric formulation,
eq. (3.70). This means that the two formalisms correspond to physically
distinguished theories and not only to two different formulations of the same
theory. In fact, as we will see in chapter 6, the two approaches will lead to
different values of some inflationary observables.
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Chapter 4

Inflation and Cosmological
Perturbations

This chapter is a review of inflationary cosmology. For the moment we leave
a part any modification of gravity considering only GR as the gravitational
theory we need for our purposes. The reader interested in inflationary cos-
mology within modified theories of gravity can find the subject in the next
chapter.

In what follows we will present the elementary features of inflation and
discuss the topic of cosmological perturbation theory. First we will provide
some elementary elements of general cosmology, which will turn out to be
useful for the following issues. Then, we will present the Flatness and Hori-
zon problems, showing how inflationary cosmology can solve them and how
we can theoretically achive inflation with the aid of a scalar field. Finally,
we will treat cosmological perturbations focusing, at the very end, on their
application to inflationary cosmology.

The following review is not intended to be a complete treatment of infla-
tionary standard theory. The arguments exposed are only the ones needed in
order to achieve a (self-consistent) presentation of inflationary perturbation
theory. This presentation will not comprehend all the possible applications
of cosmological perturbation theory to inflationary physics. We will ap-
peal only to the material necessary to derive the scalar and tensor spectral
indices, namely the main physical observables of inflationary cosmology.

For more details and further material we refer to the huge amount of
reviews one can find in literature. There many textbooks on treating in-
flationary cosmology, among which we cite [Muk05, Lin05, Dod03, Wei08].
Other useful sources are the extensive review articles on the subject, for
example [BTW06, Rio02, LR99]. Some specific references will be also given
throughout the text.

43
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4.1 Basic Cosmology

In this section we briefly review the basic elements of modern cosmology be-
ing of crucial importance for the topics treated from now on. The presented
material can be found in all classical textbooks of cosmology, among which
we pick out [Wei72].

Assuming the large scale homogeneity and isotropy of the universe (Cos-
mological Principle), the standard cosmology is based upon the maximally
spatially symmetric Friedmann-Robertson-Walker (FRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (4.1)

where a(t) is the scale factor of the universe and K = 0, 1,−1 is the spa-
tial curvature. The coordinates, r, θ, and φ, are referred to as comoving
coordinates: a particle at rest in these coordinates remains at rest, i.e. at
constant r, θ, and φ. The FRW metric is sometimes written in terms of the
conformal time η defined by dt = a dη, i.e.

η :=

∫
dt

a(t)
. (4.2)

In these coordinate system we have

ds2 = a2(η)

[
−dη2 + dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (4.3)

which, in the case K = 0, reduces to a metric conformally connected to the
Minkowski metric:

ds2 = a2(η)
(
−dη2 + dx2 + dy2 + dz2

)
, (4.4)

The conformal time will turn out useful later, when we will recall it in order
to simplify some calculations.

The equations governing the cosmic behaviour are of course the Einstein
field equations1 (2.30):

Gµν = Rµν −
1

2
Rgµν = Tµν , (4.5)

where Tµν is the matter energy-momentum tensor.
The matter inside a homogeneous and isotropic universe can be de-

scribed, at large scales and with high precision, as a perfect fluid. Its energy-
momentum tensor is solely determined by its energy density ρ and isotropic
(no shear nor viscosity) pressure P :

Tµν = (ρ+ P )uµuν + P gµν , (4.6)

1In this chapter we do not consider any deviation from GR. See chapters 5 and 6 for
cosmology in modified gravity.
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with the vector uµ denoting the four-velocity of an observer comoving with
the fluid. In cosmology a key role is played by the equation of state relating
the energy density ρ(t) and the pressure P (t),

P = wρ , (4.7)

where w is the equation of state parameter, which takes the values w = 0
and w = 1/3 for pressureless matter (dust) and radiation, respectively.

Combining the FRW metric (4.1) with the Einstein field equations (4.5),
we obtain the standard cosmological equations dominating the universe evo-
lution. These are the well-known Friedmann equation

H2 =

(
ȧ

a

)2

=
ρ

3
− K

a2
, (4.8)

and acceleration (Raychaudhuri) equation

ä

a
= −ρ+ 3P

6
. (4.9)

H(t) := ȧ/a is called Hubble parameter (rate) and can be used to measure
the expansion velocity of the universe. Here a dot means differentiation with
respect to the time coordinate t. We can also combine eq. (4.8) and eq. (4.9)
to obtain an equation for Ḣ,

2Ḣ = −ρ− P +
2K

a2
. (4.10)

Eq. (4.8) and eq. (4.9) (or equivalently eq. (4.10)) determine the time evo-
lution of the function a(t) once the functions ρ(t) and P (t) are known.

Finally, we notice that from the conservation equation ∇λTµν = 0 we
get the continuity equation

ρ̇+ 3H(ρ+ P ) = 0 , (4.11)

which, once given the equation of state (4.7), provides the following solution
of ρ(t) in terms of a(t):

ρ ∝ a−3(1+w) . (4.12)

Hence, in the physical cases of matter (w = 0) and radiation (w = 1/3)
dominated universes we get respectively

ρm ∝ a−3 and ρr ∝ a−4 . (4.13)

These inserted back into eq. (4.8) and eq. (4.9) give the time evolution of the
scale factor in the flat (K = 0) matter and radiation dominated universes
as, respectively,

a ∝ t2/3 and a ∝ t1/2 . (4.14)
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The scale factor is then an increasing function of the coordinate time t in
both universes, but the expansion velocity decreases in time (decelerated
expansion), as can be seen computing the respective Hubble parameters

H =
2

3t
and H =

1

2t
. (4.15)

The (old) standard Big-Bang cosmological model requires a radiation dom-
inated era followed by a matter dominated era, i.e. an always decelerating
universe. As we will see in the next section, this implies serious troubles for
early time cosmology.

4.2 Flatness and Horizon Problems

In this section we analyze the main shortcomings of Big-Bang cosmology. In
particular we discuss the Flatness and Horizon problems showing why the
old standard Big-Bang model cannot address them.

Flatness Problem

The best way to explain the Flatness problem is achieved rewriting the
Friedmann equation in terms of the critical energy density. This is defined
setting K = 0 in eq. (4.8) in which case we have

ρcrit := 3H2 . (4.16)

In the standard cosmological model, the critical energy density determines
the amount of energy for which the universe will collapse at some instant
in the future (ρtot > ρcrit with K > 1) or will expand eternally (ρtot ≤ ρcrit
with K ≤ 1). The energy density of any matter field in the universe can be
expressed as a fraction Ω of ρcrit:

Ω =
ρ

ρcrit
. (4.17)

The Friedmann equations (4.8) can then be rewritten as

Ω− 1 =
K

a2H2
, (4.18)

which clearly shows that if ρ = ρcrit the universe is spatially flat K = 0.
In a matter or radiation dominated universes we have the solutions (4.14)
which inserted in eq. (4.18) give respectively

|Ω− 1| ∝ t2/3 or |Ω− 1| ∝ t . (4.19)

This means that Ω tends to evolve away from unity with the expansion of
the universe.
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The Flatness problem can now be formulated. Recent astronomical ob-
servations suggest that our universe is spatially flat within a few percent of
accuracy, i.e. we have Ω ≃ 1 today. If we assume the standard (decelerated)
Big-Bang cosmology, this result forces Ω to be much closer to unity in the
past. For example, if we require |Ω−1| < 0.02 today, we have |Ω−1| < 10−61

at Planck time. This appears to be an extreme fine-tuning of initial con-
ditions. Unless initial conditions are chosen very accurately, the universe
either collapses too soon or expands too quickly before the structure can be
formed. This is exactly what we mean with the term Flatness problem.

Horizon Problem

Consider a comoving wavelength λ and the corresponding physical wave-
length aλ, which at some time is inside the Hubble radius H−1 (i.e. aλ ≤
H−1). As we can see from the results (4.14), standard big-bang decelerating
cosmology is characterized by the cosmic evolution of a ∝ tn with 0 < n < 1.
In this case the physical wavelength grows as aλ ∝ tn, whereas the results
(4.15) tell us that the Hubble radius evolves as H−1 ∝ t. Therefore the
physical wavelength becomes much smaller than the Hubble radius at late
times. Conversely any finite comoving scale becomes much larger than the
Hubble scale at early times. This means that a causally connected region
can only be a small fraction of the Hubble radius. The Horizon problem
can then be posed as follows: how is it possible that today we observe an
extremely isotropic universe also at scales well beyond the Hubble radius if
at those scales the galaxies have never been causally connected throughout
the entire hystory of the universe?

The most striking example of the Horizon problem is exposed in the
CMB. We need first to introduce the comoving particle horizon defined as

dH(t0) :=

∫ t0

t∗

dt

a(t)
, (4.20)

which is the largest distance that a particle could have traveled from an
initial time t∗ to today t0. dH tells us whether two events has ever been in
causal contact, while the causal connected region at time t is given by the
particle horizon DH(t) := a(t)dH(t). This, for a(t) ∝ tn, can be approxi-
mated to Hubble radius H−1 which is then a good estimation of the causal
connected region at time/scale factor a(t). Within the standard cosmolog-
ical model, we can estimate the ratio of the comoving particle horizon at
decoupling dH(tdec) to the particle horizon today dH(t0). We find

dH(tdec)

dH(t0)
≃
(
tdec
t0

)1/3

≃
(

105

1010

)1/3

≃ 10−2 . (4.21)

This implies that the causally connected regions at last scattering are much
smaller than the horizon size today. This appears to be at odds with obser-
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vations of the CMB which presents the same temperature to high precision
(at least to one part in 104) in all directions in the sky. Yet there is no way
to establish thermal equilibrium if these points were never in causal contact
before last scattering.

The problem is even more severe if we consider the size of a causal region
at the Planck time tP . We can estimate that

dH(tP )

dH(t0)
≃ 10−26 . (4.22)

Thus the universe we see today should be made up of about 1078 regions
which were causally disconnected at the Planck time and yet the distribution
of matter was extremely smooth over this whole region. This, again, is what
we call horizon problem.

4.3 The Standard Model of Inflation

The simplest way to address the problems outlined in the previous section is
to consider an inflationary primordial phase, where the universe undergoes
an accalerated expansion. In what follows we show how those problems are
solved and how we can theoretically obtain the needed expansion introducing
a scalar field minimally coupled to gravity.

The Idea of Inflation

Acceleretating the universe expansion means to require an accelerated scale
factor a(t). The idea of inflationary cosmology is then to impose

ä > 0 . (4.23)

Considering the acceleration equation (4.9), this condition implies

ρ+ 3P < 0 , (4.24)

or, in term of the equation of state parameter,

w < −1

3
. (4.25)

This correspond to violating the strong energy condition, or, physically
speaking, to consider negative values for the pressure P (assuming ρ still
positive). The condition (4.23) essentially means that ȧ (= aH) increases
during inflation and hence that the comoving Hubble radius (aH)−1 de-
creases in the inflationary phase. It is now easy to see how this idea solves
the Flatness and Horizon problems.
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Flatness Problem. We again appeal to the Friedmann equation writ-
ten in the form of eq. (4.18). Since during the inflationary period aH rapidly
increases with time, Ω is immediately driven toward unity. Then, after in-
flation stops, the universe undergoes a radiation and a matter dominated
eras as dictated by standard cosmology and |Ω− 1| begins to increas again.
However, as long as the inflationary expansion lasts sufficiently long and
drives Ω very close to 1, Ω will remain close to unity even in the present
epoch. In this manner, we can explain the observed late time spatial flatness
of the universe.

Horizon Problem. The Horizon problem can be solved looking at the
comoving particle horizon (4.20). This can be rewritten as

dH =

∫ a0

a∗

1

aH

da

a
=

∫ a0

a∗

1

aH
d(ln a) , (4.26)

i.e. as the logarithmic integral over the history of the comoving Hubble
radius (aH)−1. The inflationary trick consists in assuming a sufficiently
large Hubble radius at the beginning of inflation (such that all the events
in the universe were in causal contact), which then decrises in size during
the subsequently inflationary epoch. In this way the current Hubble radius
could be smaller than in the past but the comoving particle horizon could
be still much larger, i.e.

dH(t0) ≫
1

a(t0)H(t0)
. (4.27)

This means that, even though all the galaxies we observe are not causally
connected now, they were in causal contact before inflation took place. Dur-
ing this period they had the possibility to thermalize providing, in this way,
the present highly isotropic universe. This solves the Horizon problem.

Of course the Hubble radius begins to grow after inflation ends, during
the standard cosmological eras. In order to solve the horizon problem, it is
required that the following condition is satisfied for the comoving particle
horizon: ∫ tdec

t∗

dt

a(t)
≫
∫ t0

tdec

dt

a(t)
, (4.28)

i.e. the comoving distance which photons can travel before decoupling needs
to be much larger than that after the decoupling. This is achieved when
the universe expands at least about e62 times during inflation, or, in other
words, we need a number of e-foldings at least of

N ≃ 62 , (4.29)

where N is defined by the relation

a(tf ) = eNa(ti) , (4.30)
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where ti and tf are respectively the initial and final times of the inflationary
period.

Scalar Field Cosmology

The question now is: how we can realize the inflationary requirement (4.23)?
Or equivalently, what kind of matter has an equation of state satisfying
condition (4.24)? The answer is: scalar field.

We can achieve this scenario introducing a minimally coupled scalar field
ϕ into the Einstein-Hilbert action (2.1). This scalar field is called inflaton.
The full gravitational action we must consider is then

S :=

∫
d4x

√
−g

(
1

2
R+ Lϕ

)
, (4.31)

where the scalar field Lagrangian is

Lϕ := −1

2
gµν∂µϕ∂νϕ− V (ϕ) , (4.32)

with V (ϕ) is a generic potential. There are no matter fields during the
inflationary stage2 (except for the inflaton). Varying the Lϕ term in action
(4.31) with respect to gµν gives the stress-energy tensor

T (ϕ)
µν := ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

]
, (4.33)

which is nothing but (3.68) with ω = 1.
The main assumption we make on the inflaton field is that it has to be

homogeneous, i.e. it is assumed to be function of the time only:

ϕ(xµ) → ϕ(t) . (4.34)

In this case, all the spatial derivatives in the energy-momentum tensor

(4.33) vanish and T
(ϕ)
µν can be written in the form of a perfect fluid energy-

momentum tensor

T (ϕ)
µν = (ρϕ + Pϕ)uµuν + Pϕ gµν , (4.35)

defining the scalar field energy density and pressure to be, respectively,

ρϕ =
1

2
ϕ̇2 + V (ϕ) ; (4.36)

Pϕ =
1

2
ϕ̇2 − V (ϕ) ; (4.37)

2All the known particles were created when inflation finished during a phase called
Reheating, which will be not discussed in our review.
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with an overdot denoting differentiation with respect to the coordinate time
t. We can verify this statement computing the 00-component and the spatial

trace of T
(ϕ)
µν ; we get T

(ϕ)
00 = ρϕ and T (ϕ)i

i = 3Pϕ, which correspond to
the same results we obtain from the perfect fluid energy-momentum tensor
(4.35). Consequently, the inflaton equation of state parameter reads

wϕ =
Pϕ
ρϕ

=
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
, (4.38)

which, in the limit V (ϕ) ≫ ϕ̇2, becomes wϕ ≃ −1 (negative pressure) satis-
faying the inflationary condition (4.25). In conclusion, we have found that,
as long as the potential energy is much greater than the kinetic energy, a
homogeneous scalar field (the inflaton) can drive the inflationary expansion.

Inflationary Dynamics

The first models of scalar field inflation3 used a scalar field trapped in a
false vacuum. Since ϕ̇ is small in the local minima then the scalar field is
potential dominated with a constant value of the potential which gives a
constant Hubble rate and an exponentially growing scale factor (de Sitter
solution). These first, simple models suffered from the problem of how to
end inflation [HMS82, GW83]. The only way to stop inflating for ϕ was
to (quantum) tunnel to the true vacuum region. However, this is a viable
scenario only if the tunneling happens at the same time at every spatial
point4, which clearly represents a violation of causality.

Alternatives scenarios, where the field is falling toward the true vacuum
and is not trapped in a local minimum, were soon proposed in [Lin82, AS82].
In order to still inflate, the scalar field has to satisfy some specific condi-
tions, which make the inflaton to slow-roll toward the true minimum. In
what follows we review the basic elements of slow-roll inflation deriving the
conditions the inflaton must obey.

We first need equations of motion from the inflationary action (4.31).
Variation with respect to the metric gµν gives of course the Einstein field

equations Gµν = T
(ϕ)
µν , from which, using the FRW metric (4.1), we obtain

the Friedmann and acceleration equations: (4.8) and (4.9) (with ρ, P =
ρϕ, Pϕ now). Hence, with the definitions (4.36) and (4.37), eqs. (4.8) and
(4.10) read5:

3H2 = ρϕ =
1

2
ϕ̇2 + V (ϕ) ; (4.39)

3Among which the very first is [Gut81].
4Otherwise the region still in the false vacuum would be inflated away from the ex-

panding bubbles [HMS82, GW83].
5Since the observed spatial curvature of the universe is practically zero (Flatness prob-

lem), from now on we set K = 0.
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2Ḣ = −ρϕ − Pϕ = −ϕ̇2 . (4.40)

Similarly, varying action (4.31) with respect to the scalar field ϕ gives the
canonical Klein-Gordon equation 2ϕ−V,ϕ = 0, which using the FRW metric
becomes6

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 . (4.41)

We now introduce the slow-roll conditions. We assume that the potential
V (ϕ) is such that

ϕ̇2 ≪ V (ϕ) and ϕ̈≪ Hϕ̇ . (4.42)

We have already seen that the first of these two conditions is necessary
in order for the inflaton equation of state to satisfy the constraint (4.25).
The second one means that we are considering an almost flat potential, at
least in the inflationary region, which implies the inflaton is slowly rolling
down to the true vacuum. In this manner, the scalar field can remain for
sufficiently long time in the inflationary region where the first condition
ensures inflation.

Imposing the inflationary conditions (4.42), the field equations (4.39)
and (4.41) become respectively

3H2 ≃ V ; (4.43)

3Hϕ̇ ≃ −V,ϕ . (4.44)

It is now useful to define the so-called slow-roll parameters:

ϵ1 := − Ḣ

H2
and ϵ2 :=

ϕ̈

Hϕ̇
. (4.45)

Using eqs. (4.43) and (4.44) we can relate these parameters to the form of
the potential V (ϕ). In fact, taking into account eq. (4.40) and eq. (4.43),
the square and the time derivative of eq. (4.44) gives, respectively,

ϵ1 ≃
1

2

(
V,ϕ
V

)2

and ϵ2 − ϵ1 ≃
V,ϕϕ
V

. (4.46)

The slow-roll parameters are of crucial importance in inflationary cosmology
since, as we will see later, they can be connected to some physical observ-
ables. Measuring these observables will then give us the values of ϵ1 and
ϵ2, which, through eqs. (4.46), will provide useful information about the
structure of the inflationary potential V (ϕ).

6Alternatively, one can derive this equation from the continuity equation (4.11) using
the definitions (4.36) and (4.37).
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We can also rewrite the slow-roll conditions (4.42) in terms of the slow-
roll parameters (4.45). It is easy to see that the second condition of (4.42)
becomes exactly

ϵ2 ≪ 1 , (4.47)

while deriving (in time) the Hubble rate H we find

ä

a
= Ḣ +H2 = H2(1− ϵ1) . (4.48)

This equation tells us that, in order to satisfy the main inflationary condition
ä > 0, we must have ϵ1 < 1, i.e.

inflation ⇐⇒ ϵ1 < 1 . (4.49)

As soon as this condition fails, inflation ends. Commonly, slow-roll infla-
tionary cosmology assumes ϵ1 ≪ 1, in which case we have

slow-roll inflation ⇐⇒ ϵ1, ϵ2 ≪ 1 . (4.50)

Moreover, thanks to the results (4.46), during inflation the slow-roll param-
eters ϵ1 and ϵ2 can be considered to be approximately constant since the
potential V (ϕ) is almost flat7, i.e.

slow-roll inflation ⇐⇒ ϵ̇1, ϵ̇2 = 0 . (4.51)

We have then found how the inflationary conditions are expressed in terms
of the inflationary parameter ϵ1, ϵ2 and how these parameter can be related
to the inflaton potential.

Finally, we show how the inflationary potential V (ϕ) is also connected
to an important observable, namely the number of e-foldings N . Using
eqs. (4.43) and (4.44) we have

N =

∫ af

ai

da

a
=

∫ tf

ti

H dt

=

∫ ϕf

ϕi

H

ϕ̇
dϕ =

∫ ϕf

ϕi

3H2

3ϕ̇H
dϕ

≃ −
∫ ϕf

ϕi

V

V,ϕ
dϕ , (4.52)

where ϕi and ϕf are the values of the inflaton field at the beginning and end
of inflation, respectively.

7We can also see this considering that ϵ̇1, ϵ̇2 = O(ϵ21, ϵ
2
2), which means that condition

(4.51) holds at first order in ϵ1, ϵ2 (recall that ϵ1, ϵ2 are small because of (4.50)).
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4.4 Cosmological Perturbations

The predictive power of the inflationary standard model relies on its abil-
ity to generate primordial perturbations acting as seeds for the late time
cosmological structure formation. Consequently, the theory of relativistic
perturbations represents the main tool of modern cosmology, where we find
applications throughout the entire history of the universe. The subject is
too wide to be treated in depth here, but we will provide the basic ele-
ments we need to derive the primordial power spectra, which, as we will see,
are the observables related to the slow-roll parameters and thus, thanks to
eqs. (4.46), to the shape of the inflaton potential.

In this section we introduce the formalism of cosmological perturbations
defining notation, discussing gauge issues and deriving equations governing
their evolution. The following section will be devoted to apply these results
to the inflationary universe in order to compute power spectra.

Metric Perturbations

First of all we show how general metric perturbations can be split and clas-
sified according to their transformation property under spatial rotations.
General perturbations of the metric can be written as

ds2 = (gµν + δgµν) dx
µdxµ , (4.53)

where gµν is the background metric and δgµν characterizes the perturba-
tions. For small perturbations we require δgµν ≪ gµν . According to the
Cosmological Principle, the cosmological background metric is assumed to
be a general FRW metric (4.1), which we recall here:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (4.54)

The metric perturbations δgµν can be categorized into three distinct types:
scalar, vector and tensor perturbations. This classification is based on the
symmetry properties of the homogeneous, isotropic background, which at
any given moment of time is obviously invariant with respect to the group
of spatial rotations and translations.

The δg00 component behaves as a scalar under these rotations and hence
we can label it introducing the 3-scalar α:

δg00 = −2α . (4.55)

The spacetime components δg0i can be decomposed into the sum of the
spatial gradient of some scalar β and a vector bi with zero divergence (∂ib

i =
0):

δg0i = −2a(t) (∂iβ − bi) . (4.56)
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In a similar fashion, the components δgij , which behave as a tensor under
spatial rotations, can be written as the sum of the following irreducible
pieces:

δgij = 2ψgij + a2(t)
(
2∇i∇jγ + 2∇(icj) + hij

)
. (4.57)

Here ψ and γ are 3-scalars, ci is a divergenceless (∂ic
i = 0) 3-vector and hij

is a transverse (∂ih
i
j = 0), traceless (hii = 0) and symmetric (hij = hji)

3-tensor. The general perturbed FRW metric reads then

ds2 = −(1 + 2α) dt2 − 2a (∂iβ − bi) dt dx
i

+
[
(1 + 2ψ)gij + a2

(
2∇i∇jγ + 2∇(icj) + hij

)]
dxidxj . (4.58)

which in a spatially flat universe (gij = a2δij) reduces to

ds2 = −(1 + 2α) dt2 − 2a (∂iβ − bi) dt dx
i

+a2
(
δij + 2ψδij + 2∂i∂jγ + 2∂(icj) + hij

)
dxidxj . (4.59)

We can now classify these perturbations according to their behaviour
under spatial rotations. Scalar perturbations are characterized by the four
scalar functions α, β, γ, ψ, which are induced by energy density inhomo-
geneities. These perturbations are important because they exhibit gravita-
tional instability and may lead to the formation of structure in the universe.
Vector perturbations are described by the two vectors bi and ci and are
related to the rotational motions of the (cosmological) fluid. Usually they
decay very quickly and are not very interesting from the point of view of
cosmology. Tensor perturbations are represented only by hij . They describe
gravitational waves, which are the degrees of freedom of the gravitational
field itself. In the linear approximation gravitational waves do not induce
any perturbations in the perfect fluid. The main advantage of this decom-
position is that at linear order scalar, vector and tensor perturbations are
decoupled and can be analyzed separately. This will be very useful later
on since during the primordial inflationary phase all the perturbations are
small, which means we can analyze them at first order.

Finally, we count the number of independent functions composing δgµν .
From the scalar perturbations α, β, γ, ψ, we clearly get four independent
functions. The vector perturbations bi and ci has in total four independent
components being both divergence free. The symmetric tensor hij has to
satisfy four constrains, which means it is composed only by two indepen-
dent components. Adding all these together we arrive at ten independent
functions characterizing the perturbation δgµν , which amount exactly to the
independent components of the background metric gµν .
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Gauge Transformations

Let us consider the coordinate transformation

xµ → x̃µ = xµ + ζµ(x) , (4.60)

where ζµ are infinitesimally small functions (ζµ ≪ xµ) of the coordinates xα.
At any given spacetime point, the usual transformation law of the metric
gives

g̃αβ(x̃) =
∂xγ

∂x̃α
∂xδ

∂x̃β
gγδ(x) ≃ gαβ(x) + δgαβ − 2gγ(α∂β)ζ

γ , (4.61)

where we have kept only the terms linear in δg and ζ. In the new coordinates
x̃ the metric can also be split into background and perturbation parts,

g̃αβ(x̃) = gαβ(x̃) + δg̃αβ , (4.62)

where gαβ(x̃) is the FRW metric depending on the new coordinates x̃µ. Note
that at first order in ζ we have

gαβ(x) ≃ gαβ(x̃)− ζγ∂γgαβ . (4.63)

Comparing the expressions in (4.61) and (4.62), and taking into account
eq. (4.63), we can infer the following gauge transformation law for the cos-
mological perturbations:

δgαβ → δg̃αβ = δgαβ − ζγ∂γgαβ − 2gγ(α∂β)ζ
γ . (4.64)

Since physics has to be invariant under coordinate transformations of the
kind (4.60), all the observables depending on the perturbations δgαβ has to
be invariant under transformations (4.64). In this sense, the (4.64) plays the
same role of gauge transformations we find for istance in electrodynamics.

The transformations (4.60) are more commonly written as

t̃ = t+ δt , x̃i = xi + δij∂jδx+ δxi , (4.65)

which correspond to

ζ0 = δt , ζi = δij∂jδx+ δxi . (4.66)

What we have done is to split the spatial coordinate parameters ζi into a
scalar function δx and a divergence free (∂iδx

i = 0) vector δxi. In this
manner, δt and δx characterize the time slicing and the spatial threading,
respectively. Using the definitions (4.66), under the gauge transformations
(4.64), scalar perturbations behave as

α → α̃ = α− δ̇t ; (4.67)

β → β̃ = β − a−1δt+ a ˙δx ; (4.68)

ψ → ψ̃ = ψ −Hδt ; (4.69)

γ → γ̃ = γ − δx ; (4.70)
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while vector perturbations behave as

bi → b̃i = bi − a ˙δxi ; (4.71)

ci → c̃i = ci − δxi ; (4.72)

where as usual an overdot denotes differentiation with respect to the coor-
dinate time t. Tensor perturbations hij are invariant under gauge transfor-
mations,

h̃ij = hij . (4.73)

Thus, except for tensor perturbations, all the perturbation functions
appearing in the (perturbed) FRW metric (4.58) are not gauge invariant.
However, using the transformation laws (4.67)-(4.72), we can always build
some gauge invariants combining the perturbation functions in a suitable
way. The simplest gauge invariants we can define are the two scalars

Φ(α) := α− d

dt
[a(γ̇ + β)] ; (4.74)

Φ(ψ) := −ψ + aH(γ̇ + β) ; (4.75)

and the shear vector

Φ
(V )
i := bi − aċi . (4.76)

We notice that only δt and δx contribute to the transformations of scalar
perturbations and by choosing them appropriately we can make any two
of the four functions α, β, γ, ψ vanish. Similarly, only two of the four
independent functions bi, ci characterize physical perturbations; the other
two reflect the coordinate freedom of imposing δxi (only two conditions
because ∂iδx

i = 0). The variables (4.74), (4.75) span the two-dimensional
space of physical scalar perturbations, while the observables (4.76) span
the two-dimensional space of physical vector perturbations, which describe
rotational motion.

The gauge issue plays an important role expecially in the analysis of
scalar perturbations, for which several possible gauge choices has been con-
sidered throughout the literature being any of them more useful in different
contexts. The most common are the Longitudinal (conformal-Newtonian)
gauge and the Synchronous gauge. The first is defined by the condition
β = γ = 0, which corresponds to set δt = δx = 0. In this case, from
eqs. (4.74) and (4.75), we have Φ(α) = α and Φ(ψ) = −ψ, which give to the
gauge variables a direct interpretation. The second imposes the condition
α = β = 0, in order to have δg0α = 0 for scalar perturbations. This does
not fix the coordinates uniquely; there exists a whole class of synchronous
coordinate systems. This residual coordinate freedom leads to the appear-
ance of unphysical gauge modes, which render the interpretation of physical
results difficult.
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Finally, we discuss matter perturbations, i.e. perturbations of the energy-
momentum Tµν . These are also gauge dependent: energy density (and pres-
sure) perturbations obey the simple transformation rule

δT00 = δρ→ δρ̃ = δρ− ρ̇ δt . (4.77)

Moreover, dividing the perturbed 3-momentum T 0
i into a scalar δq and a

divergence-free vector δqi parts,

δT 0
i := ∂iδq + δqi , (4.78)

the scalar quantity δq transforms as

δq → δq̃ = δq + (ρ+ P )δt . (4.79)

We can now build another very useful gauge invariant defining

R := ψ +
H

ρ+ P
δq , (4.80)

which is often called curvature perturbation invariant since it can be related
to the spatial curvature on constant time hypersurfaces8. For standard
inflation we have δq = −ϕ̇δϕ and the curvature invariant becomes

Rδϕ := ψ − H

ϕ̇
δϕ , (4.81)

where we have used definitions (4.36) and (4.37) for the scalar field energy
density and pressure, respectively.

Cosmological Perturbation Equations

At first order scalar, vector and tensor perturbations are decoupled. This
means we can find equations governing their evolution independently. To
derive these equations we must perturb the Einstein field equations:

δGµν = δTµν . (4.82)

We leave all the details of this derivation to the given references since we
have not enough space here to go through them in depth. However, all the
equations needed for our purpose will be reported and discussed.

First of all we define two quantities (not gauge invariants) which will
help us to simplify the following equations:

χ := a(β + aγ̇) and A := 3(Hα− ψ̇)− △
a2
χ , (4.83)

8Mind not to confuse R with the curvature (Ricci) scalar R.
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where △ denotes the 3-space Laplacian9.

Scalar Perturbations. We can now write down equations for scalar
perturbations. Perturbing the G0

0, G
0
i, G

i
j − 1

3δ
i
jG

k
k and Gkk −G0

0 com-
ponents of the field equations we get, respectively,

3K +△
a2

ψ +HA = −1

2
δρ ; (4.84)

Hα− ψ̇ +
K

a2
χ = −1

2
δq ; (4.85)

χ̇+Hχ− ψ − α = a2δΠ ; (4.86)

Ȧ+ 2HA+

(
3H +

△
a2

)
α =

1

2
(δρ+ δP ) ; (4.87)

where δΠ is the perturbation of the scalar part of the anisotropic stress

given by Πij =
(
∂i∂j − △

3 δij
)
Π. Once the matter distribution is known,

these four equations provide the evolution of scalar metric perturbations α,
β, γ, ψ (or equivalently α, χ, A, ψ).

Equation (4.86) can be written in terms of gauge metric perturbations
Φ(α) and Φ(ψ), defined in Eqs. (4.74) and (4.75), as the constraint

Φ(ψ) − Φ(α) = a2δΠ . (4.88)

Thus, in absence of anisotropic stresses, as in the case of a perfect (cosmolog-
ical) fluid, we have Φ(ψ) = Φ(α). The space of physical scalar perturbations
becomes then one-dimensional and in order to characterize their evolution
we only need to find one equation for one of the gauge invariants constructed
previously. As we will see, for our purpuses, this role will be played by the
curvature invariant R, defined in eq. (4.80).

In the standard model of inflation the energy-momentum tensor Tµν

becomes the scalar field energy-momentum tensor T
(ϕ)
µν given in eq. (4.33)

(or in eq. (4.35)). Moreover, the anisotropic tensor vanishes (Πµν = 0)
and the universe can be taken spatially flat (K = 0). We can then rewrite
eqs. (4.84)-(4.87) as

△
a2
ψ +HA = −1

2

(
V,ϕδϕ+ ϕ̇ ˙δϕ− ϕ̇2α

)
; (4.89)

Hα− ψ̇ =
1

2
ϕ̇δϕ ; (4.90)

9Note that in the Longitudinal gauge χ = 0.
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χ̇+Hχ− ψ − α = 0 ; (4.91)

Ȧ+ 2HA+

(
3H +

△
a2

)
α = V,ϕδϕ+ 2ϕ̇ ˙δϕ− 2ϕ̇2α ; (4.92)

where of course δϕ is the perturbation of the inflaton field ϕ. These equa-
tions will be of central interest in the next section, where we will derive the
inflationary spectral indices.

Vector Perturbations. The vector perturbation part of the G0
i com-

ponents of the (perturbed) Einstein field equations gives the following evo-
lution equation for vector perturbations:

△+ 2K

2a2
Φ
(V )
i = δqi . (4.93)

For a single scalar field energy-momentum tensor δqi = 0 and then, in the
standard inflationary model (K = 0), we have

△Φ
(V )
i = 0 , (4.94)

which implies immediately10 Φ
(V )
i = 0. This means that within the standard

model of inflation primordial vector perturbations are not produced at all.
We can thus ignore their contribution in the analysis of next section.

Tensor Perturbations. What we need is an evolution equation for the
tensor perturbation hij . This is given by the spatial perturbation part of
the Einstein field equations and is written as

ḧij + 3Hḣij +
2K −△
a2

hij = 0 . (4.95)

Tensor perturbations describe gravitational waves which can be generally
decomposed into two polarization states h+ and h×. Any gravitational wave
can thus be expanded on a basis formed by these two polarization states:

hij = h(t) e
(+,×)
ij . (4.96)

Thus, eq. (4.95) becomes a single evolution equation for the gravitational
wave amplitude h(t),

ḧ+ 3Hḣ+
2K −△
a2

h = 0 . (4.97)

This is the same as the wave equation for a massless scalar field in an unper-
turbed FRW metric. Being a second order differential equation any tensor
perturbations generated during inflation propagates into the subsequent cos-
mological eras. As we are going to see, primordial gravitational waves can
thus bring some measurable, though small, late time physical effects.

10In spatial Fourier space eq. (4.94) reads k2Φ
(V )
i = 0.
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4.5 Perturbations Generated During Inflation

Although there are several applications of cosmological pertubation theory,
we focus on inflation. In this section we discuss primordial scalar and ten-
sor perturbations11 deriving spectral indices and the tensor-to-scalar ratio.
These are the observable which we can directly related to the shape of the
inflaton potential.

Scalar Perturbations

First of all we choose a specific gauge to work in. The most convenient gauge
choice for our aim is the so-called Uniform-field gauge: δϕ = 0. Within this
gauge the curvature invariant R, as given in eq. (4.81), coincides with the
scalar perturbation ψ,

R|δϕ=0 = ψ . (4.98)

In the Uniform-field gauge, ψ is thus gauge invariant and can be replaced
wherever appears with R. If we succeed in deriving an equation govern-
ing R we find the physical evolution of scalar perturbations, which will be
automatically independent from the gauge choice.

In order to simplify the following analysis from now on we will work
in spatial Fourier space where △ = −k2, with k denoting the comoving
wavenumber. Substituting ψ with R and taking δϕ = 0, eqs. (4.89)-(4.92)
become

−k
2

a2
R+HA =

1

2
ϕ̇2α ; (4.99)

Hα− Ṙ = 0 ; (4.100)

χ̇+Hχ−R− α = 0 ; (4.101)

Ȧ+ 2HA+

(
3H − k2

a2

)
α = −2ϕ̇2α . (4.102)

From eq. (4.100) we have immediately

α =
Ṙ
H
, (4.103)

which plugged into eq. (4.99) yields

A =
1

H

(
k2

a2
R+

ϕ̇2

2H
Ṙ
)
. (4.104)

11Vector perturbations are not generated during the inflationary phase (see previous
section).
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Inserting eqs. (4.103) and (4.104) into eq. (4.102), and taking in account eq
(4.40), we get the following evolution equation for the curvature invariant
R:

R̈+

(
3H +

Q̇

Q

)
Ṙ+

k2

a2
R = 0 , (4.105)

where we have defined12

Q :=
ϕ̇2

H2
. (4.106)

Introducing the Mukhanov-Sasaki variables zs := a
√
Q and us := zsR

[MFB92, Sas86], eq. (4.105) becomes

u′′s +

(
k2 − z′′s

zs

)
us = 0 , (4.107)

where from now on a prime denotes differentiation with respect to the con-
formal time η defined in (4.2).

We rewrite eq. (4.107) in terms of slow-roll parameters ϵ1, ϵ2, defined
in eqs. (4.45), considering slow-roll inflation where ϵ̇1 = ϵ̇2 = 0. If the
parameter ϵ1 is constant, it follows that13

η = − 1

aH(1− ϵ1)
. (4.108)

We then find [SL93]
z′′s
zs

=
ν2s − 1/4

η2
, (4.109)

with

ν2s :=
1

4
+

(1 + ϵ1 + ϵ2)(2 + ϵ2)

(1− ϵ1)2
. (4.110)

The solution of eq. (4.107) can now be expressed as a linear combination of

Hankel functions of the first H
(1)
ν and second H

(2)
ν kind

us =
1

2

√
π|η|eiπ(1+2νs)/4

[
C1H

(1)
νs (k|η|) + C2H

(2)
νs (k|η|)

]
, (4.111)

where C1, C2 are constants of integration and νs represents the Hankel
function index.

12Note that, from eq. (4.40), we have also Q = 2ϵ1.
13We have

η =

∫
dt

da
=

∫
da

a2H
= − 1

aH
+

∫
ϵ1

a2H
da ,

where we have used d(aH) = Hda + adH. If ϵ1 is constant and ϵ1 < 1 (inflationary
conditions) we get

η = − 1

aH
+ ϵ1

∫
da

a2H
= − 1

aH

∞∑
n=0

ϵn1 = − 1

aH

1

1− ϵ1
.
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In the asymptotic past (kη → −∞) the solution to eq. (4.107) is given
by

us →
1√
2k
e−ikη (kη → −∞) , (4.112)

corresponding to a (quantum) vacuum state in flat space time field theory
well inside the (comoving) Hubble radius (aH)−1. This fixes the coefficients
to be C1 = 1 and C2 = 0, meaning that the general solution of eq. (4.107)
we must consider is

us =
1

2

√
π|η|eiπ(1+2νs)/4H(1)

νs (k|η|) . (4.113)

On the other side, in the super-horizon limit kη → 0, the solution (4.113)
becomes

us → e
iπ
4
(2νs−1) 2νs−

3
2

1√
2k

Γ(νs)

Γ(3/2)
(−kη)−νs+

1
2 (kη → 0) , (4.114)

where we have used the asymptotic properties of the Hankel functions. Here
Γ is the Euler gamma function14, for which it holds Γ(3/2) =

√
π/2.

In slow-roll inflation, at zeroth order in ϵ1 and ϵ2, we have z
′′
s /zs ≃ (aH)2.

For the modes deep inside the Hubble radius (k ≫ aH, or |kη| ≫ 1) us
satisfies the standard equation of a canonical field in Minkowski spacetime:
u′′s + k2us ≃ 0. During inflation, after the Hubble radius crossing (k = aH),
the effect of the gravitational term z′′s /zs becomes important. In the super-
Hubble limit (k ≪ aH, or |kη| ≪ 1) the last term on the left hand side of
eq. (4.105) can be neglected, giving the solution

R = C3 + C4

∫
dt

a3Q
, (4.115)

where C3, C4 are integration constants. The second term can be identi-
fied as a decaying mode, which rapidly decays during inflation. Hence the
curvature perturbation approaches a constant value C3 after the Hubble ra-
dius crossing, which means that all the super-Hubble modes freezes after
inflation.

We can now define the power spectrum of curvature perturbations as

Ps :=
k3

2π2
|R|2 . (4.116)

In the super-horizon limit, we can compute Ps recalling solution (4.114):

Ps ≃
1

Q

(
(1− ϵ1)

Γ(νs)

Γ(3/2)

H

2π

)2 ( |kη|
2

)3−2νs

. (4.117)

14Not to be confused with the (Levi-Civita) connection Γλ
µν .
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Since the curvature perturbations are frozen after the Hubble radius cross-
ing, the spectrum (4.117) can be evaluated at k = aH. We then define the
scalar spectral index ns as

ns − 1 :=
d lnPs
d ln k

∣∣∣∣
k=aH

, (4.118)

which, thanks to eq. (4.117), becomes simply

ns − 1 = 3− 2νs . (4.119)

Since during inflation we have ϵ1, ϵ2 ≪ 1, at first order in the ϵ’s the scalar
spectral index becomes

ns − 1 ≃ −4ϵ1 − 2ϵ2 . (4.120)

This result tells us that the spectrum is close to scale invariance: ns ≃ 1
(at zeroth order). A rapid estimation of the scalar power spectrum is then
given by

Ps
1
2 ≃ H2

2πϕ̇

∣∣∣∣∣
k=aH

. (4.121)

The result (4.120) is one of the most important in inflationary cosmol-
ogy since ns is a physical observable and can be measured with nowadays
experiments. Recently, many of such experiments has been performed and,
at the moment, the best value we have is [WMAP09]

ns = 0.960± 0.013 , (4.122)

which clearly confirms the theoretical result given in (4.120). As already
mentioned, the importance of measuring ns relies on the fact that it is
connected, through the slow-roll parameter ϵ1 and ϵ2 (see eqs. (4.46)), to
the shape of the inflaton potential V (ϕ). Thus, knowing the values of the
slow-roll parameters means to gain some breakthrough into fundamental
physics, or at least to achieve some piece of information about the origin of
the universe. The problem is that, in order to obtain both ϵ1 and ϵ2, the
measure of ns alone does not suffice. We need another independent result,
which could be derived analyzing tensor inflationary perturbations.

Tensor Perturbations

The analysis we have just done for scalar perturbations can be repeated for
tensor perturbations. As we have seen, also tensor perturbations are gener-
ated during the inflationary phase. We remind that the gravitational wave
perturbations hij , and thus also its amplitude h, are gauge invariant. Con-
sequently, determining the evolution of h means to characterize the physical
behaviour of tensor perturbations.
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In fourier space (△ = −k2) and in a spatially flat universe (K = 0), the
equation governig gravitational waves, eq. (4.97), reads

ḧ+ 3Hḣ+
k2

a2
h = 0 . (4.123)

We notice that this is equal to equation (4.105), except for the additional
term in Q which is now missing. We can still define the Mukhanov-Sasaki
variable ut := ah in order to rewrite eq. (4.123) as

u′′t +

(
k2 − a′′

a

)
ut = 0 . (4.124)

The process can now proceed exactly as before. We express a′′/a in terms
of slow-roll parameters,

a′′

a
=
ν2t − 1/4

η2
, (4.125)

with

ν2t :=
1

4
+

2− ϵ1
(1− ϵ1)2

. (4.126)

The solution of eq. (4.124) we consider is

us =
1

2

√
π|η|eiπ(1+2νt)/4H(1)

νt (k|η|) , (4.127)

which is normalized taking the short wavelenght limit (kη → −∞).

The spectrum of tensor perturbations Pt is defined similarly to the scalar
one Ps. The only difference comes from considering all the polarization
states of the gravitational wave, which, in brief, corresponds to an additional
factor of 8 in the definition of Pt:

Pt := 8× k3

2π2
|h|2 . (4.128)

Again, taking the super-horizon limit (kη → 0) of solution (4.127), we find

Pt ≃ 8

(
(1− ϵ1)

Γ(νt)

Γ(3/2)

H

2π

)2 ( |kη|
2

)3−2νt

(4.129)

In analogy with the scalar analysis, we define the tensor spectral index nt as

nt :=
d lnPt
d ln k

∣∣∣∣
k=aH

, (4.130)

which, using eq. (4.129), becomes

ns = 3− 2νt . (4.131)
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Substituting the definition of νt, eq. (4.126), at first order in the slow-roll
parameters we find

nt ≃ −2ϵ1 . (4.132)

For tensor perturbations the spectral index is close to zero since ϵ1 ≪ 1. Fi-
nally, we can obtain a rapid estimation of the tensor perturbation spectrum
with

Pt
1
2 ≃ H2

2π

∣∣∣∣∣
k=aH

. (4.133)

Finally, we introduce the tensor-to-scalar ratio r defined as the ratio
between the tensor and scalar power spectra,

r :=
Pt
Ps

. (4.134)

Although it is an observable, r is still related to ns and nt. The usefulness of
r relies on the fact that it is easier to measure than nt. Instead of measuring
directly ns and nt we could measure ns and r, which would probably repre-
sent an advantage. With the estimations (4.121) and (4.133), it is possible
to evaluate r in terms of the slow-roll parameters,

r ≃ 8Q ≃ 16ϵ1 , (4.135)

where in the last step we have taken only linear terms in ϵ1 and ϵ2. Eq. (4.135)
introduces a consistency relation for r and nt,

r = −8nt , (4.136)

which underlines the connection between the two quantities.
The tensor spectral index nt (or the tensor-to-scalar ratio r) is a physical

observable which can, in principle, be measured independently from ns.
Then, the result (4.132) is exaclty the one we need in order to completely
determine the values of ϵ1 and ϵ2. Once we measure both ns and nt, with the
reqiured accuracy, the form of the inflaton potential will begin to be unveiled.
Unfortunately, neither nt nor r have yet been measured, because of several
difficoulties in detecting the extremely feeble gravitational waves15. Some
experiments, which, hopefully, will be able to detect the small effects these
primordial tensor perturbations cause in the CMB physics, are scheduled for
the next future. Thanks to them, we will probably be able to understand
something more about inflation and our universe in general.

15At the moment, we can only rely on an observational upper bound of r < 0.22
[WMAP09].



Chapter 5

Inflationary Perturbations in
Modified Gravity: Metric
Formulation

The present chapter, together with the last one, represents the main part of
this work. Here we study inflationary cosmological perturbations within the
metric formulation of Generalized gravity, whilst in the following chapter we
will face with the Palatini approach. The aim is to derive scalar and tensor
spectral indices and to compare the obtained results in different gravitational
theories such as f(R) and Scalar-Tensor Gravity.

First, we introduce the (modified) background cosmological equations
in order to outline the differences from the canonical Friedmann (4.8) and
acceleration (4.9) equations. Then we present the cosmological perturbation
equations and repeat the analysis performed in chapter 4 for both scalar
and tensor perturbations. Finally, we discuss the obtained results showing
how they reduce in both f(R) and Scalar-Tensor theories. As a particular
example, we analyze the Starobinsky model of inflation [Sta80], which can
be recasted in the f(R) class of theories.

The style of the chapter is kept at a more technical level in comparison
with the previous ones. Accordingly, the text lacks of some (rather long)
derivations of important equations, but references to the works where they
are presented are always given in place.

The following material can be found in the works studying cosmological
perturbations in Generalized Gravity, among which the ones made by Hwang
(and Noh) represent, without any doubt, the majority [Hwa90a, Hwa90b,
Hwa91, Hwa96, HN96, Hwa97, HN01, HN02, NH01, HN05]. The subject is
also summarized in some review articles such as [DT10].

67
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5.1 Background Cosmological Equations

In this section we present the background (cosmological) equations for the
theories denoted in section 3.5 with the name of (metric) Generalized Grav-
ity. For the sake of simplicity, we report the corresponding action, eq. (3.63),

SGG =

∫
d4x

√
−g

[
1

2
f(R,ϕ)− 1

2
ω(ϕ)(∂ϕ)2 − V (ϕ) + LM (gµν ,Ψ)

]
. (5.1)

and field equations, eqs. (3.66) and (3.67),

FRµν −
1

2
fgµν −∇µ∇νF + gµν2F = T (ϕ)

µν + Tµν ; (5.2)

2ϕ+
1

2ω
(ω,ϕ∇µϕ∇µϕ− 2V,ϕ + f,ϕ) = 0 ; (5.3)

obtained with an independent variation of action (5.1) with respect to gµν

and ϕ, respectively. All the required notation can be found in chapter 3, we
just stress that the function F is defined by

F (R) :=
∂f(R,ϕ)

∂R
. (5.4)

The aim here is to indroduce the (modified) equations corresponding to
the canonical Friedmann equation (4.8) and the acceleration equation (4.9)
(or equivalently eq. (4.10)). We assume the universe is still described by the
FRW metric1 (4.1),

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (5.5)

which will be substituted into the equations of motion (5.2) and (5.3). The

two energy-momentum tensor Tµν and T
(ϕ)
µν can be recasted into the form of

a perfect fluid energy-momentum tensor, as we saw in the previous chapter.
The scalar field ϕ is still assumed to be homogeneous, so we have

ρϕ =
1

2
ωϕ̇2 + V (ϕ) ; (5.6)

Pϕ =
1

2
ωϕ̇2 − V (ϕ) ; (5.7)

as its energy density and pressure, respectively2. Once again, an overdot
denotes differentiation with respect to the coordinate time t.

1This assumption is completely independent of the theory of gravity we choose since
it relies only on treating the universe as homogeneous and isotropic.

2Note that now ω has not been set to one.
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Inserting metric (5.5) in the field equations (5.2) and (5.3) we obtain the
following modified cosmological equations (see for example [HN96, NH01,
DT10]):

3FH2 +
K

a2
=

1

2
(RF − f)− 3HḞ +

1

2
ωϕ̇2 + V + ρM ; (5.8)

−2FḢ − K

a2
= F̈ −HḞ + ωϕ̇2 + ρM + PM ; (5.9)

ϕ̈+ 3Hϕ̇+
1

2ω

(
ω,ϕϕ̇

2 + 2V,ϕ − f,ϕ
)
= 0 ; (5.10)

which correspond to the modifications of eqs. (4.8), (4.10) and (4.41). Choos-
ing f = R, ω = 1 and K = 0 these coincides with the standard inflation-
ary equations. Confronting eqs. (5.8) and (5.9) with eqs. (4.8) and (4.10),
it is easy to see that the modifying function f(R) leads to several new
terms, which render the cosmological equations completely different from
the canonical ones.

5.2 Cosmological Perturbations

Cosmological perturbations are defined in Generalized Gravity exactly as in
standard GR. All the arguments discussed in section 4.4 still hold here. The
only exception are the cosmological perturbation equations which, relying
on the cosmolgical background equations, will now take another form. In
this section we present the cosmological perturbation equations which will
be used in the following inflationary perturbations analysis.

Again, we divide metric perturbations according to their transformation
properties under spatial rotations: we have four scalar functions α, β, ψ, γ,
two (divergenceless) vector bi, ci, and the (gravitational wave) tensor per-

turbations hij . The quantities Φ(α), Φ(ψ) and Φ
(V )
i are still gauge invariant,

as well as

Rδϕ := ψ − H

ϕ̇
δϕ . (5.11)

We can also construct another useful gauge invariant from the perturbation
of the function F , namely δF . Under gauge transformations, this quantity
behaves as

δF → ˜δF = δF − Ḟ δt . (5.12)

If we then define the scalar

RδF := ψ − H

Ḟ
δF , (5.13)

this will be invariant under cosmological gauge transformations. RδF will
turn out useful soon, when we will decide the best gauge chioce we need for
inflationary cosmological perturbations in Generalized Gravity.
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We can now present the (modified) cosmological perturbation equations.
Once again, the quantities

χ := a(β + aγ̇) and A := 3(Hα− ψ̇)− △
a2
χ , (5.14)

will help us to simplify the following equations.

Scalar Perturbations. Perturbing the field equations (5.2) we find
the following equations governing scalar type perturbations [HN96, HN02,
HN05, DT10]

△+ 3K

a2
ψ +HA = − 1

2F

[(
3H2 + 3Ḣ +

△
a2

)
δF − 3H ˙δF

+
1

2

(
ω,ϕϕ̇

2 + 2V,ϕ − f,ϕ
)
δϕ+ ωϕ̇ ˙δϕ

+
(
3HḞ − ωϕ̇2

)
α+ ḞA+ δρM

]
; (5.15)

Hα− ψ̇ +
3K

a2
χ =

1

2F

[
ωϕ̇δϕ+ ˙δF −HδF − Ḟα− δqM

]
; (5.16)

χ̇+Hχ− α− ψ =
1

F

(
δF − Ḟχ

)
; (5.17)

Ȧ+ 2HA+

(
3Ḣ +

△
a2

)
α =

1

2F

[
3 ¨δF + 3H ˙δF −

(
6H2 +

△+ 6K

a2

)
δF

+4ωϕ̇ ˙δϕ+
(
2ω,ϕϕ̇

2 − 2V,ϕ + f,ϕ
)
δϕ

−3Ḟ α̇−
(
4ωϕ̇2 + 3HḞ + 6F̈

)
α

−ḞA+ δρM + δPM

]
. (5.18)

These equations are obtained by perturbing the G0
0, G

0
i, G

i
j − 1

3δ
i
jG

k
k

and Gkk −G0
0 components of the field equations, respectively. Anisotropic

perturbations δΠµν has been assumed to vanish.

The new modified perturbation equations (5.15)-(5.18) appear to be
rather more complicated than the canonical ones (4.84)-(4.87). Several new
terms, depending on the form of f(R,ϕ) through its derivative F , seem to
preclude any easy manipulation. However, as we will see in the next section,
choosing the right gauge will considerably simplify these equations.

Vector Perturbations. Perturbing the G0
i components of the field

equations (5.2) we obtain the following equation for vector cosmological
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perturbations [HN96, HN02]

△+ 2K

2a2
Φ
(V )
i =

δqMi
F

, (5.19)

where Φ
(V )
i is defined in (4.76). The only deviation from the canonical corre-

spondig equation (4.94) is represented by a modulation of the matter source
coupling through the modifying function F . Anyway, if we still assume no
matter fields, except the scalar field ϕ, we have δqMi = 0, which means that
the right hand side of equation (5.19) vanishes. The situation becomes ex-
actly the same we had in the standard model of inflation: eq. (5.19) implies

Φ
(V )
i = 0, i.e. no vector perturbations are generated during the inflationary

phase. Consequently, in the next section analysis we will not discuss vector
inflationary perturbations.

Tensor Perturbations. In absence of anisotropic stresses (Πµν = 0),
the perturbation of the Gij components of the field equations (5.2) provides
the following equation for the gravitational wave [HN96, HN02]

ḧij +

(
3H +

Ḟ

F

)
ḣij +

2K −△
a2

hij = 0 . (5.20)

Expanding the gravitational wave hij into the polarization state basis as in
(4.96), we can transform eq. (5.20) in an equation for the gravitational wave
amplitude h:

ḧ+

(
3H +

Ḟ

F

)
ḣ+

2K −△
a2

h = 0 . (5.21)

Confronting this equation with its canonical corresponding one, eq. (4.97),
we notice that there is only one difference appearing in an additional damp-
ing term modulated by the form of the function F . In the forthcoming
section we will use eq. (5.21) to derive the tensor spectral index in General-
ized Gravity.

5.3 Perturbations from Inflation

In this section we derive scalar and tensor spectral indices for (metric) Gen-
eralized Gravity. The analysis is performed at a completely general level
leaving the discussions of the results we can obtain in specific inflationary
model for the next sections.

First of all, we need to choose a gauge, which, again, it is of interest only
for scalar perturbations. In the standard model of inflation we chose the
Uniform-field gauge, δϕ = 0. A more convenient choice in modified grav-
ity could be the Uniform-F gauge: δF = 0, depending on the inflationary
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model we are studying. We will either select the Uniform-field gauge or the
Uniform-F gauge depending on which theory we are working with.

The Uniform-F gauge is the more useful to work with when we are re-
stricted to f(R) theories of gravity. In this class of theories all the contribu-
tions of the scalar field ϕ (and of its perturbation δϕ) are absent. From the
definitions (5.11) and (5.13) we see immediately that setting δF = δϕ = 0
gives R = RδF = Rδϕ = ψ. This means that ψ becomes a gauge invari-
ant and can be substituted with R whenever it appears. Then, combining
equations (5.15)-(5.18) could lead to an equation governing its evolution.

The Uniform-field gauge is instead used in Scalar-Tensor theories of grav-
ity. In this class of theories F depends only on ϕ, i.e. we have f(R,ϕ) =
F (ϕ)R, and we get δF = F,ϕδϕ. Choosing δϕ = 0 immediately gives δF = 0.
These are the same conditions we had in the f(R) theories with the Uniform-
F gauge. All the results obtained setting δF = δϕ = 0 will then hold for
both f(R) and Scalar-Tensor theories.

Unfortunately, though it includes these two important theories, this anal-
ysis does not hold for more general theories, where both a scalar field and
a non-linear coupling of R appear. Setting δϕ = 0 does not imply δF = 0
since, in that case, we have δF = F,ϕδϕ+F,RδR. Another choice of gauge is
probably more appropriate in this more general case but we will restrict our-
selves to the pure f(R) or F (ϕ) case inasmuch as several interesting result
are obtained within these theories.

Scalar Perturbations

Accordingly to the previous discussion, in what follows we assume δF =
δϕ = 0 and replace ψ with R. Moreover, since all the matter fields vanish
during inflation, we set Tµν = 0. Then, in a flat universe (K = 0) and in
spatial Fourier space (△ = −k2), eqs. (5.15)-(5.18) read

−k
2

a2
R+HA = − 1

2F

[(
3HḞ − ωϕ̇2

)
α+ ḞA

]
; (5.22)

Hα− Ṙ =
Ḟ

2F
α ; (5.23)

χ̇+Hχ− α−R = − Ḟ
F
χ ; (5.24)

Ȧ+ 2HA+

(
3Ḣ − k2

a2

)
α = − 1

2F

[(
4ωϕ̇2 + 3HḞ + 6F̈

)
α

+3Ḟ α̇+ ḞA
]
. (5.25)
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From eq. (5.23) we get immediately

α =
Ṙ
Z
, (5.26)

where, for the sake of simplicity, we have defined the function

Z := H +
Ḟ

2F
. (5.27)

Plugging eq. (5.26) into eq. (5.22), we obtain

A = − 1

Z

(
3HḞ − ωϕ̇2

2FZ
Ṙ − k2

a2
R
)
. (5.28)

Then, substituting eqs. (5.26) and (5.28) into eq. (5.25), and recalling the
background equation (5.9), we obtain a second-order differential equation
for the curvature perturbation R:

R̈+

(
3H +

Q̇m
Qm

)
Ṙ+

k2

a2
R = 0 , (5.29)

where we have defined

Qm :=
1

Z2

(
ωϕ̇2 +

3Ḟ 2

2F

)
. (5.30)

We notice that eq. (5.29) has the same form of its corresponding one in
the standard model of inflation, eq. (4.105). The only difference appears in
the definition of the function Qm, which is clearly different from Q, defined
in eq. (4.106). We also point out the presence of the last term appearing
in brackets of eq. (5.30), which depends solely on the modifying function
F . This term is of crucial importance for the forthcoming results. In the
Palatini formulation, as we will see in the next chapter, it does not appear,
implying drastic consequences for the physical observables of the theory.

Starting from eq. (5.29) we can now repeat the procedure performed
in the previous chapter. We introduce suitable Mukhanov-Sasaki variable
zs := a

√
Qm and us := zsR, in terms of which eq. (5.29) becomes

u′′s +

(
k2 − z′′s

zs

)
us = 0 , (5.31)

where a prime denotes again differentiation with respect to the conformal
time η defined in eq. (4.2). At this point, we introduce the following variables
[HN96, Hwa97, HN01, DT10]

ϵ1 := − Ḣ

H2
, ϵ2 :=

ϕ̈

Hϕ̇
, ϵ3 :=

Ḟ

2HF
, ϵ4 :=

Ė

2HE
, (5.32)
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where the function E is defined as

E := F

(
ω +

3Ḟ 2

2Fϕ̇2

)
. (5.33)

The first two variables in (5.32) are nothing but the slow-roll parameters
defined in (4.45). The remaining two depends on the modifying function F
and in the canonical case, where F = ω = 1, vanish. In terms of parameters
(5.32) and function (5.33) the quantity Qm reads

Qm =
ϕ̇2

H2

E

F (1 + ϵ3)2
. (5.34)

Usually, in Generalized Gravity the slow-roll conditions (4.50) and (4.51)
are extended to all the ϵ’s defined in (5.32). In what follows we then assume

ϵi ≪ 1 and ϵ̇i = 0 with i = 1, 2, 3, 4 . (5.35)

With the conditions ϵ̇i = 0 and using eq. (4.108), in eq. (5.31) we have
[HN96, DT10]

z′′s
zs

=
ν2s − 1/4

η2
, (5.36)

with

ν2s :=
1

4
+

(1 + ϵ1 + ϵ2 − ϵ3 + ϵ4)(2 + ϵ2 − ϵ3 + ϵ4)

(1− ϵ1)2
. (5.37)

Note the new terms depending on ϵ3 and ϵ4 which did not appear in (4.110).
Exactly as in section 4.5, the solution of eq. (5.31) can thus be written as
linear combination of Hankel functions,

us =
1

2

√
π|η|eiπ(1+2νs)/4

[
C1H

(1)
νs (k|η|) + C2H

(2)
νs (k|η|)

]
, (5.38)

with C1 and C2 constant of integration. Again, taking the asymptotic past
(short wavelenght) normalization (C1 = 1, C2 = 0), the solution we must
consider is

us =
1

2

√
π|η|eiπ(1+2νs)/4H(1)

νs (k|η|) . (5.39)

The power spectrum of curvature perturbations is defined in (4.116), and
reads

Ps :=
k3

2π2
|R|2 . (5.40)

In the super-horizon limit (kη → 0), using the solution (5.39), we obtain

Ps ≃
1

Qm

(
(1− ϵ1)

Γ(νs)

Γ(3/2)

H

2π

)2 ( |kη|
2

)3−2νs

. (5.41)
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We can thus compute the scalar spectral index, defined in eq. (4.118), at
horizon crossing:

ns − 1 :=
d lnPs
d ln k

∣∣∣∣
k=aH

= 3− 2νs , (5.42)

with νs given in eq. (5.37). Since ϵi ≪ 1 for all i = 1, 2, 3, 4, we can evaluate
ns at first order in the ϵ’s. The result is

ns − 1 ≃ −4ϵ1 − 2ϵ2 + 2ϵ3 − 2ϵ4 . (5.43)

Finally, from eq. (5.41) the scalar power spectrum can be estimated, at
zeroth order in the ϵ’s, as

Ps ≃
1

Qm

(
H

2π

)2

. (5.44)

We can compare the result in (5.43) with the one obtained in canonical
inflation (4.120), which can be recovered setting F = ω = 1 in (5.43). Since
ϵi ≪ 1, ns is again close to scale invariance, ns ≃ 1. However, new terms,
depending on the modifying function f(R,ϕ) through ϵ3 and ϵ4, now appear.
These could in principle imply some deviation from the value obtained within
the standard model of inflation (4.120). However, since this value has been
already measured, the result given by any specific (modified gravity) model
of inflation should match the number in (4.122), i.e.

ns = 0.960± 0.013 . (5.45)

We can thus use the experimental value (5.45) in order to constrain the
inflationary modified models. Any model which does not reproduce the
number in (5.45) happens to be ruled out by experimental data.

Tensor Perturbations

In a flat universe and in spatial Fourier space, eq. (5.21) reads

ḧ+

(
3H +

Ḟ

F

)
ḣ+

k2

a2
h = 0 . (5.46)

This is similar to eq. (5.29) of scalar perturbations, a part from the difference
of the factor F instead of Qm. We can still define suitable Mukhanov-Sasaki
variables as zt = a

√
F and ut = zth, in terms of which eq. (5.46) becomes

u′′t +

(
k2 − z′′t

zt

)
ut = 0 . (5.47)

The analysis is similar to the one performed for scalar perturbations. As-
suming again ϵi ≪ 1, we obtain [HN01, DT10]

z′′t
zt

=
ν2t − 1/4

η2
, (5.48)
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with

ν2t :=
1

4
+

(1 + ϵ1)(2− ϵ1 + ϵ3)

(1− ϵ1)2
. (5.49)

The solution of eq. (5.47) is then

us =
1

2

√
π|η|eiπ(1+2νs)/4H(1)

νs (k|η|) , (5.50)

and, in the super-horizon limit, the tensor power spectrum, defined in (4.128),
takes the form

Pt := 8× k3

2π2
|h|2 ≃ 8

F

(
(1− ϵ1)

Γ(νt)

Γ(3/2)

H

2π

)2 ( |kη|
2

)3−2νt

. (5.51)

The tensor spectral index, defined in (4.130), follows

nt :=
d lnPt
d ln k

∣∣∣∣
k=aH

= 3− 2νt , (5.52)

with νt given in eq. (5.49). At first order in the ϵ’s, we have

nt ≃ −2ϵ1 − 2ϵ3 , (5.53)

which generalizes the result obtained in (4.132). Again, from eq. (5.51)
follows the rapid estimation of the power spectrum,

Pt ≃
8

F

(
H

2π

)2

. (5.54)

Similarly to scalar perturbations, the result (5.53) is modified by the
function f(R,ϕ) through the parameter ϵ3. Anyway, since nt has not been
measured yet, tensor perturbations do not help to constrain the modified
gravity models of inflation. As we will see, different models predict different
result for nt, which consequently, once measured, will provide an useful tool
to discriminate between various inflationary theories.

Finally, we compute the tensor-to-scalar ratio defined in (4.134). Using
the rapid estimations (5.44) and (5.54), we find

r :=
Ps
Pt

≃ 8Qm
F

≃ 16 (ϵ1 + ϵ3) , (5.55)

where in the last step we have used eq. (5.9) and kept only terms to first
order in the ϵ’s. Although the result (5.55) clearly differs from (4.135), the
consistency relation (4.136) is preserved: we still have r = −8nt (at least
to first order). Thus, exactly as it happens in canonical inflation, the two
observables nt and r are directly related.
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5.4 Example 1: f(R) Theories

At this point, we discuss how the previous general results reduce in some
specific subclasses of theories. In this section we analyze (metric) f(R)
gravity, which was introduced in section 3.3.

The very first model of inflation is exactly an f(R) modification of the
Einstein-Hilbert action. Even before Guth proposed its inflationary model
based on a scalar field trapped in a false vacuum [Gut81], Starobinsky had
found that a R2 gravitational lagrangian could indeed drive inflation [Sta80].
The form of f(R) for this model is

f(R) = R+
R2

6M2
, (5.56)

where M denotes a parameter of the theory. The Starobinsky model is
not plagued by the graceful exit problem and the period of cosmic acceler-
ation is followed by the radiation dominated epoch with a transient mat-
ter dominated phase [Sta81, Vil85, MMS86]. Moreover it predicts nearly
scale-invariant spectra of gravitational waves and temperature anisotropies
consinstent with CMB observations [KMP87, HN01, DT10].

Although the Starobinsky model is the most studied among the f(R)
theories, there are also other inflationary models based on different choices
of f(R), for example, exponential [Zha06] or R4 [KKW10a, KKW10b]. Some
models even try to unify the late3 and early time behaviours of the universe
with a single gravitational action [Car04, NO07, Cog08]. For all these mod-
els we now study the spectra of scalar and tensor perturbations generated
during inflation.

For f(R) gravity the scalar field ϕ and all its contributions are absent.
We can thus set ϕ = δϕ = 0 in all the results derived in the previous section.
For example, now we have ϵ2 = 0. A problem arises from the function E
which happens to be ill-defined since divided by ϕ. The way out, in order
to save our results, is to redefine it as E := 3

2 Ḟ
2. In this manner we have

[HN01, DT10]

Qm =
6Fϵ23

(1 + ϵ3)2
=

E

FH2(1 + ϵ3)2
, (5.57)

and

ϵ4 =
F̈

HḞ
. (5.58)

The background equations (5.8) and (5.9) reduce to

3FH2 =
1

2
(RF − f)− 3HḞ ; (5.59)

−2FḢ = F̈ −HḞ . (5.60)

3In these models the late time acceleration results as an effect of the curvature rather
than being driven by some kind of Dark Energy.
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Eq. (5.60) can be rewritten in terms of the slow-roll parameters as

ϵ1 = −ϵ3(1− ϵ4) , (5.61)

which, to first order, gives the following constraint

ϵ1 + ϵ3 ≃ 0 . (5.62)

Hence, assuming ϵi ≪ 1 (with i = 1, 3, 4), for f(R) theories the scalar
spectral index (5.43) becomes

ns − 1 ≃ −4ϵ1 + 2ϵ3 − 2ϵ4

≃ −6ϵ1 − 2ϵ4 , (5.63)

while the tensor spectral index (5.43), as well as the tensor-to-scalar ratio,
vanish at first order:

nt ≃ 0 ; (5.64)

r ≃ 0 . (5.65)

We can compare (5.63) and (5.64) with the results (4.120) and (4.132)
obtained within the standard model of inflation. We notice that in (5.63) ϵ1
appears with a factor 6 instead of 4, whilst ϵ4 plays the role of ϵ2 in (4.120).
This reflects the fact that now inflation is driven by some gravitational
modification rather than by a scalar field ϕ. Tuning the parameter ϵ4 with
a consistent choice of f(R), could still reproduce the experimental number
(4.122). The scalar spectral index ns can thus be used in order to constrain
different f(R) models, but cannot discriminate between f(R) and standard
inflation.

The tensor spectral index nt presents instead another story. At first
order in the slow-roll parameters, which is the only one we will hopefully
measure soon, the f(R) inflation has no tensor modes. This is at odds with
the standard model of inflation for which a minimal quantity of tensor modes
is expected. The result can thus be used to discriminate between f(R) and
standard inflation: if even a small amount of tensor modes are observed by
future CMB experiments, f(R) theories have to be discarded as possible
models of inflation.

5.5 Example 2: Starobinsky Inflation

In order to compute some numbers, we analyze the Starobinsky model (5.56)
as a specific f(R) inflationary model. We will constrain the only free pa-
rameter of the theory, namely M , imposing the few experimental data we
have. For this section we do not set the Planck mass mpl equal to one4.

4The Planck mass, in our units, is the inverse of the Newton constant G.
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For the Starobinsky model inflation occurs in the regime R ≫ M2 and
|Ḣ| ≪ H2. We can thus approximate F with5

F ≃ R

3M2
≃ 4H2

M2
, (5.66)

From the estimations (5.44) and (5.54), the scalar and tensor power spectra
becomes, repectively,

Ps ≃ 1

12π

(
M

mpl

)2
1

ϵ21
; (5.67)

Pt ≃ 4

π

(
M

mpl

)2

; (5.68)

where we have used the constraint (5.62). Without going too much into
details, for Starobinsky inflation the number of e-foldings N happens to be
related to ϵ1 as [HN01, DT10]

N =

∫ tf

ti

H dt ≃ 1

2ϵ1
. (5.69)

The scalar power spectrum (5.67) becomes then

Ps ≃
N2

3π

(
M

mpl

)2

. (5.70)

Imposing the WMAP 5-year normalization [WMAP09] corresponding to

Ps = (2.445± 0.096)× 10−9 , (5.71)

and taking the tipical value N ≃ 62 (see (4.29)), we obtain the following
number for the parameter M :

M ≃ 2.7× 10−6mpl . (5.72)

We can also evaluate the scalar spectral index for this model. From the
relation (5.66) we gain another constraint on the slow-roll parameters:

ϵ1 + ϵ4 ≃ 0 . (5.73)

Then, the result (5.63) reduces to

ns − 1 ≃ −4ϵ1 ≃ − 2

N
, (5.74)

5The last step is achieved substituting R = 6(2H2 + Ḣ), which comes from evaluating
the trace of the field equation in the FRW metric.



80 Chapter 5

which, for N ≃ 62, gives
ns ≃ 0.968 , (5.75)

in agreement with the observed result (4.122). Finally, we report the (second-
order) result for the tensor-to-scalar ratio [HN01, DT10]

r ≃ 12

N2
≃ 3.1× 10−3 . (5.76)

We conclude discussing the results obtained. From (5.76) we immedi-
ately realize that the constraint r < 0.22 is satisfied. However, this result
completely differs from the canonical one (4.135) being at second order in
the slow-roll parameters. In fact, the value (5.76) is a hundred times smaller
than the one expected within the standard model of inflation, which is of
order 10−1. The result (5.75) instead tells us that, with the value (5.72)
for M , the Starobinsky model matches the experimental data at least for
scalar perturbations. Note that the value (5.72) implies small deviations
from canonical GR as long as R≪M2, i.e. in the low-energy limit.

The Starobinsky model can be considered the most viable alternative to
the standard model of inflation. Once the future experiments will permit
to measure the scalar-to-tensor ratio r with the required accuracy, we will
know which one among the scalar field and gravitational modifications is
the final answer to the inflationary riddle.

5.6 Example 3: Scalar-Tensor Theories

In this final section we focus on Scalar-Tensor theories studying how the gen-
eral results derived in section 5.3 reduce. Scalar-Tensor inflationary models
abound in literature and providing a complete bibliography is impossible in
this work. However, we give some indicative references for the reader who
wants to deepen the argument.

The most studied inflationary models within Scalar-Tensor gravity are
(of course) based on Brans-Dicke theory. These models gave even rise to a
new kind of inflation called extended inflation [MJ84, LS89, BM90, GQ90].
A generalization, where ω is considered an arbitrary function of ϕ, has
been named hyperextended inflation [SA90]. These has been, for long time,
the most studied models of Scalar-Tensor inflation, as denoted by the huge
amount of technical papers studying the topic.

Another interesting model is the non-minimal inflation [FU90, NS10,
ORS10], where the inflaton ϕ is non-minimally coupled to the curvature
scalar R through the function F (ϕ) = 1+ξϕ2. This model has been recently
used as way to identificate the inflaton with the Standard Model Higgs
boson [BS08, BKS08], where, anyway, some serious problems seem to arise6.

6Non-minimally coupled inflation will be treated, within the Palatini formulation, in
section 6.6.
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Furthermore, there are many other example of inflation in Scalar-Tensor
gravity [Pal10] and even models where the Brans-Dicke field does not act as
the inflaton and two scalar field are introduced [Bar95, GW95].

To conclude we cite some works where the theory of cosmological per-
turbations has been employed in Scalar-Tensor inflation [SBB89, Kai95] (see
also [Far04]). The following analysis includes all the cited models, the ones
with two scalar fields.

In Scalar-Tensor theories we set f(R,ϕ) = F (ϕ)R leaving ω(ϕ) and V (ϕ)
arbitrary. The background equations (5.8) and (5.9) reduce to

3FH2 = −3HḞ +
1

2
ωϕ̇2 + V ; (5.77)

−2FḢ = F̈ −HḞ + ωϕ̇2 ; (5.78)

where the function F := ∂f/∂R depends now only by the scalar field ϕ.
Using the relation Ḟ = F,ϕϕ̇, we can rewrite eq. (5.78) as

ϵ1 + ϵ3 = ϵ3 (ϵ1 + 2ϵ3) + ϵ23
2ωF

F 2
,ϕ

. (5.79)

Once given the functions F and ω, the factor 2ωF/F 2
,ϕ is simply a function of

ϕ where no further ϵ’s contribution appears7. Then, at first order, eq. (5.79)
leads to the constraint

ϵ1 + ϵ3 ≃ 0 , (5.80)

which is nothing but the same constraint we have obtained in f(R) gravity,
eq. (5.62). The scalar spectral index (5.43) becomes

ns − 1 ≃ −6ϵ1 − 2ϵ2 − 2ϵ4 . (5.81)

This result is similar to the one obtained in f(R) gravity, but now the
parameter ϵ2 does not vanish. Because of (5.80), the tensor spectral index
(5.53) and the tensor-to-scalar ratio (5.55) are negligible to first order,

nt ≃ 0 ; (5.82)

r ≃ 0 ; (5.83)

exactly as it happens in f(R) gravity.
We finally discuss these results. The scalar spectral index (5.81), a part

from the factor 6 in front of ϵ1, presents a deviation from the canonical result
(4.120) depending on the new parameter ϵ4. The presence of ϵ2 still indicates
that inflation is driven by the scalar field ϕ, but the ϵ4 term reflects the non-
trivial coupling between ϕ and the curvature scalar R. As in f(R) gravity,

7For example, in Brans-Dicke theories, where F = ϕ and ω = ω0/ϕ, it becomes con-
stant: 2ω0.
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an intelligent choice of the coupling function F (ϕ) could still reproduce the
experimental number (4.122). The result (5.81) can then be used in order
to constrain different Scalar-Tensor models of inflation, but cannot act as a
tool to distinguish those models from the standard one.

The tensor spectral index (5.82), or equivalently the tensor-to-scalar ra-
tio (5.83), presents instead a crucial difference from the canonical result
(4.132). Similarly to the f(R) case (5.64), it vanishes at first order in the
slow-roll parameters. Hence, if only a small amount of primordial gravita-
tional waves will be measured by forthcoming experiments, all the Scalar-
Tensor models of inflation will be ruled out8. As a general conclusion, we
can state that, within the metric formulation, any f(R) or Scalar-Tensor
modification of inflationary gravity provides a physically detectable mark in
the tensor spectral index.

8Note that, though it can be considered as a particular Scalar-Tensor theory with
F = ω = 1, the results (5.81) and (5.83) do not hold for the standard model of inflation.
This is due to the fact that the constraint (5.80) cannot be true anymore, since in eq. (5.79)
we are now dividing by zero.



Chapter 6

Inflationary Perturbations in
Modified Gravity: Palatini
Formulation

In this chapter we repeat all the inflationary perturbation analysis we carried
out in the previous chapter. Instead of using the metric formulation of
Generalized Gravity, we will consider the Palatini approach to the theory.
Again, the aim is to derive and discuss scalar and tensor spectral indices
and to show how they reduce in both f(R) and Scalar-Tensor theories.

The procedure mirrors the one of chapter 5. We first introduce the
background equations and present the general treatment of cosmological
perturbations for Palatini Generalized gravity, deriving in particular the
spectral indices and the tensor-to-scalar ratio. Then we will study the dif-
ferent cases of f(R) and Scalar-Tensor gravity, providing as specific example
with non-minimally coupled gravity, which can be included in the Scalar-
Tensor theories class.

Also for this chapter, the style of the text is kept at a high technical
level, so several derivations are not written down explicitly but references
to the original works are always provided.

The subject of cosmological perturbations in Palatini modified gravity
has been studied in [KK06, LC06, ULT07, TUT08, DT10], whilst the ap-
plications to the inflationary universe have been analyzed by the author in
[TC10].

6.1 Background Cosmological Equations

In this section we show how the background (cosmological) equations (4.8)
and (4.9) are modified within the Palatini formulation of Generalized Grav-
ity introduced in section 3.5. For the sake of simplicity, we recall the action
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(3.72),

SGG =

∫
d4x

√
−g

[
1

2
f(R̂, ϕ)− 1

2
ω(ϕ)(∂ϕ)2 − V (ϕ) + LM (gµν ,Ψ)

]
, (6.1)

and the field equations (3.73) and (3.75),

F (R̂, ϕ)R̂µν −
1

2
f(R̂, ϕ)gµν = Tµν + T (ϕ)

µν ; (6.2)

∇̂µ∇̂µϕ+
1

2ω

[
ω,ϕ∂

µϕ∂µϕ− 2V,ϕ + f(R̂, ϕ),ϕ
]
= 0 ; (6.3)

obtained varying (6.1) independently with respect to gµν and ϕ. All the
required notation has already been introduced in chapter 3, we just notice
and stress that in the Palatini formulation the curvature invariant appearing
in action (6.1) is not the usual curvature invariant defined by the Levi-Civita
connection Γλµν but is built with the independent connection Γ̂λµν . As we saw

in section 3.5, an independent variation of action (6.1) with respect to Γ̂λµν
leads to the condition

∇̂µ

[√
−g F (R̂, ϕ) gαβ

]
= 0 , (6.4)

which implies the following relation between the two connections:

Γ̂λµν = Γλµν +
1

2F

[
2δλ(µ∂ν)F + gµνg

λσ∂σF
]
. (6.5)

Finally, we recall that using the condition (6.5) we can relate the two Ricci
tensor as

R̂µν = Rµν +
3

2F 2
(∇µF )(∇νF )−

1

F
∇µ∇νF − 1

2F
gµν∇σ∇σF . (6.6)

Having reassumed the main results of section 3.5 in the Palatini formu-
lation, we can now focus on the cosmological applications. Once again, we
assume the (background) universe isotropic and homogeneous and thus still
described by the FRW metric1 (4.1). The only non vanishing components
of (6.6) are then [MW03, MW04, WM04]

R̂00 = −3
ä

a
+

3Ḟ 2

2F 2
− 3

2F
∇0∇0F ; (6.7)

R̂ij = [aä+ 2ȧ2 + 2K +
a2

2F
∇0∇0F ]δij +

Ḟ

F
Γ0
ij ; (6.8)

which, substituted back in eq. (6.2), lead to

6F

(
H2 +

Ḟ 2

4F 2
+
HḞ

2F
+
K

a2

)
− f = 2ωϕ̇2 − 2V + ρM + 3PM ; (6.9)

2F

(
Ḣ +

K

a2

)
− 3Ḟ 2

2F
−HḞ + F̈ = −ωϕ̇2 − ρM − PM ; (6.10)

1See footnote at page 68.
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where we used the definitions (5.6) and (5.7) for the homogeneous scalar
field ϕ. These correspond to the modification of the canonical equations
(4.8) and (4.10): the first one governs the evolution of the scale factor in
the cosmology of Palatini Generalized Gravity, the second one will turn out
useful later on. We remind that the functions f and F appearing in (6.9)
and (6.10) are still functions of R̂, but can in principle become function of
R taking the trace of the field equations2.

The background equations (6.9) and (6.10) differ not only form the
canonical ones (4.8) and (4.10), but also from the corresponding ones ob-
tained within the metric formulation (5.8) and (5.9). Of course this follows
from the fact that the metric and Palatini formulations of Generalized Grav-
ity correspond to two different physical theories. In any case, setting f = R̂,
ω = 1 and K = ρM = PM = 0, eqs. (6.9) and (6.10) still reduce to (4.8) and
(4.10) obtained in standard GR.

Finally, though not of interest in what follows, using the FRW metric
the modified KG equation (6.3), becomes

ϕ̈+ 3Hϕ̇+
3Ḟ

F
ϕ̇+

1

2ω

(
ω,ϕϕ̇

2 + 2V,ϕ − f,ϕ
)
= 0 . (6.11)

Note the differences with the metric equation (5.10). A part from the fact
that the functions f and F depend now by R̂ rather than by R, eq. (6.11)
presents a new term in ϕ̇ which was absent in (5.10). This term comes
from expanding the d’Alembertian operator ∇̂µ∇̂µ in eq. (6.3), which is
now defined with the indepedent connection Γ̂λµν and not, as usual, with the

Levi-Civita connection Γλµν .

6.2 Cosmological Perturbations

In this section we develop the general formalism of cosmological pertur-
bations presenting equations for scalar, vector and tensor perturbations in
the Palatini formulation. Once again, all the material discussed in section
4.4 can be equally applied to Palatini Generalized Gravity, except for the
perturbation equations which differ not only from the canonical ones, but
also from the ones obtained within the metric formulation. This happens
because the cosmological background equations are different in the metric
and Palatini approaches.

Exactly as before, cosmological perturbations are divided in scalar (α,
β, γ, ψ), vector (bi, ci) and tensor (hij) perturbations according to their
transformation properties under spatial rotations. We still have the gauge

2See section 3.5.
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invariants Φ(α), Φ(ψ), Φ
(V )
i , Rδϕ and3

RδF := ψ − H

Ḟ
δF , (6.12)

while the quantities (4.83) will help to simplify the equations.

Scalar Perturbations. Perturbing the G0
0, G

0
i, G

i
j − 1

3δ
i
jG

k
k and

Gkk − G0
0 components of the field equations leads to the following scalar

perturbation equations [KK06, TUT08, TC10]

ZA+
3K +△
a2

ψ +
1

2F

[
3Ḟ 2

2F
+ 3HḞ − ωϕ̇2

]
α

=
1

2F

{
−1

2

[
ω,ϕϕ̇

2 + (2V − f),ϕ
]
δϕ

+

[
3H2 − 3Ḟ 2

4F 2
− R

2
+

3K2 −△
a2

]
δF

−ωϕ̇ ˙δϕ+ 3Z ˙δF + δρM

}
; (6.13)

Zα− ψ̇ +
K

a2
χ =

1

2F

[
ωϕ̇δϕ−

(
H +

3Ḟ

2F

)
δF + ˙δF − δqM

]
; (6.14)

χ̇+

(
H +

Ḟ

F

)
χ− α− ψ =

1

F
δF ; (6.15)

Ȧ+ (H + Z)A+
3Ḟ

2F
α̇+

[
6Ż − 3Ḣ +

3HḞ

2F
+

2

F
ωϕ̇2 +

△
a2

]
α

=
1

2F

{
4ωϕ̇ ˙δϕ+

[
2ω,ϕϕ̇

2 + (f − 2V ),ϕ
]
δϕ

+

[
3Ḟ 2

F 2
+ 6(H2 + Ḣ)−R− △

a2

]
δF

+

(
3H − 6Ḟ

F

)
˙δF + 3 ¨δF + δρM + δPM

}
; (6.16)

where there are no anisotropic stresses (Πµν = 0) and the function Z is
defined by

Z := H +
Ḟ

2F
. (6.17)

As it happens in the metric approach, eqs. (6.13)-(6.16) appear rather more
complicated than the canonical ones (4.84)-(4.87). This is due to several

3See definition (5.13).
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new terms depending now by the perturbation of the modifying function
δF . Anyway, with an intelligent choice of gauge, we will be able again to
recast these equations into (easy) handle relations.

Vector and Tensor Perturbations. The equations for vector and
tensor perturbations in Palatini formalism are the same of the corresponding
ones in the metric formulation. This is due to the fact that both R and ϕ
do not have either vector or tensor components being pure scalars [KK06].
We can thus simply recall the results of section 5.2.

The vector perturbation equation is

△+ 2K

2a2
Φ
(V )
i =

δqMi
F

, (6.18)

whose right hand side vanishes in case of no matter fields. Once again,
eq. (6.18) tells us that vector perturbations will not be generated during
inflation, making these modes uninteresting in Palatini Generalized Gravity
too. The gravitational wave (amplitude) equation, the equation for tensor
perturbations, is given by

ḧ+

(
3H +

Ḟ

F

)
ḣ+

2K −△
a2

h = 0 . (6.19)

Although the form is the same, eq. (6.19) is slightly different from eq. (5.21)
since F is now function of R̂ rather than of R.

6.3 Perturbations from Inflation

This section is dedicated to present the original work the author carried
out in [TC10]. We will study cosmological perturbations generated during
the primordial inflationary phase within the Palatini Generalized Gravity
framework. All the obtained results will be completely general, leaving the
specific cases for the last sections.

Once again, we need to choose a convenient gauge first. The issue is
identical to the one discussed in section 5.3, so we limit us to reassume only
the main points here. A small difference appears in the fact that now the
function f depends on R̂ instead of R, but all the other arguments remain
the same.

We will select either the Uniform-field gauge δϕ = 0 or the Uniform-
F gauge δF = 0 depending on which theory we are working with. The
Uniform-field gauge will be employed in f(R) theories where the scalar field
ϕ is absent, while the Uniform-F gauge will be useful in Scalar-Tensor grav-
ity where we have f(R̂, ϕ) = F (ϕ)R̂. In both cases, the choice we make
leads to the condition δϕ = δF = 0, which simplifies enormously the scalar
perturbation equations (6.13)-(6.16) and renders ψ gauge invariant. In fact,
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ψ can be replaced by R wherever it appears in our equations since we get
R = RδF = Rδϕ = ψ.

Finally, we remind that the following analysis does not hold for more
general theories where both a scalar field and non-linear gravitational mod-
ifications are considered.

Scalar Perturbations

In what follows we focus on inflation setting as usual K = 0 (spatially flat
spacetime) and Tµν = 0 (no matter fields). Moreover, we impose our gauge
δϕ = δF = 0, substitute ψ with R and work in (spatial) Fourier space
(△ = −k2). With these assumptions all the right hand sides of eqautions
(6.13)-(6.16) vanish and we have

ZA− k2

a2
R+

1

2F

[
3Ḟ 2

2F
+ 3HḞ − ωϕ̇2

]
α = 0 ; (6.20)

Zα− Ṙ = 0 ; (6.21)

χ̇+

(
H +

Ḟ

F

)
χ− α−R = 0 ; (6.22)

Ȧ+ (H + Z)A+
3Ḟ

2F
α̇+

[
6Ż − 3Ḣ +

3HḞ

2F
+

2

F
ωϕ̇2 − k2

a2

]
α = 0 . (6.23)

Again, from eq. (6.21) we have

α =
Ṙ
Z
, (6.24)

which inserted into (6.20) gives

A =
1

Z

[
k2

a2
R− Ṙ

2FZ

(
3Ḟ 2

2F
+ 3HḞ − ωϕ̇2

)]
. (6.25)

Putting eqs. (6.24) and (6.25) into eq. (6.23) and using the background equa-
tion (6.10), we obtain a second-order differential equation for the curvature
invariant R:

R̈+

(
3H +

Q̇P
QP

)
Ṙ+

k2

a2
R = 0 , (6.26)

where we have defined

QP :=
ωϕ̇2

Z2
. (6.27)

The form of eq. (6.26) is equal to the one we found in standard inflation,
eq. (4.105). Once again, the differences show up in the definition of the
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function QP , which not only differs from the canonical Q (4.106) but also
from the metric Qm (5.29). In the Palatini formulation of the theory, the
term depending on the modifying function F appearing in Qm, is completely
absent. This is exactly the crucial point determining the differences between
the Palatini and metric formulations in the physical results we are going to
derive.

The analysis can now proceed in parallel to the ones we carried out
in the previous chapters. Eq. (6.26) can be rewritten in a useful form by
defining suitable Mukhanov-Sasaki variables zs := a

√
QP and us := zsR,

which allows us to transform it into the equation for an oscillator with a
time dependent frequency which is formed only by background quantities:

u′′s +

(
k2 − z′′s

zs

)
us = 0 . (6.28)

Remind that a prime denotes differentiation with respect to the conformal
time η defined in (4.2). In analogy with the standard and metric cases, we
define the following slow-roll parameters

ϵ1 := − Ḣ

H2
, ϵ2 :=

ϕ̈

Hϕ̇
, ϵ3 :=

Ḟ

2HF
. (6.29)

The fourth parameter ϵ4, appearing in the metric analysis, is usless in the
Palatini case and will not be introduced. In terms of parameters (6.29) the
quantity QP reads4

QP =
ωϕ̇2

H2(1 + ϵ3)2
. (6.30)

Assuming again the inflationary conditions

ϵi ≪ 1 and ϵ̇i = 0 with i = 1, 2, 3 , (6.31)

we have

z′′s
zs

=
ν2s − 1/4

η2
, (6.32)

where we have used relation (4.108) and

ν2s :=
1

4
+

(1 + ϵ1 + ϵ2)(2 + ϵ2)

(1− ϵ1)2
. (6.33)

4Note that if we want to write QP exactly as we wrote Qm in (5.34), we just have to
define the function E := ωF , in which case we get ϵ4 = ϵ3. Then, all the results obtained
within the metric approach can be equally applied to the Palatini formulation if we just
take into account the condition ϵ4 = ϵ3.
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Note that now, in the definition of νs, the parameter ϵ3 does not appear
anywhere5. The solution of eq. (6.28) is then

us =
1

2

√
π|η|eiπ(1+2νs)/4H(1)

νs (k|η|) , (6.34)

which we have normalised by taking the early time, short wavelength (kη →
∞) limit of the general solution, which reduces to the adiabatic vacuum case
for a field in an expanding background us → e−ikη/

√
2k.

In the super-horizon limit (kη → 0), the power spectrum of scalar per-
turbations, defined in (4.116), becomes

Ps :=
k3

2π2
|ψ|2 ≃ 1

QP

(
(1− ϵ1)

Γ(νs)

Γ(3/2)

H

2π

)2 ( |kη|
2

)3−2νs

. (6.35)

Since the scalar perturbation is conserved after exiting the Hubble radius
we can evaluate the power spectrum (6.35) at the time when k = aH and
examine its spectral index ns, defined in (4.118), as

ns − 1 :=
d lnPs
d ln k

∣∣∣∣
k=aH

= 3− 2νs . (6.36)

During inflation we have ϵi ≪ 1 (i = 1, 2, 3), hence, at first order in the ϵ’s,
the scalar spectral index becomes

ns − 1 ≃ −4ϵ1 − 2ϵ2 . (6.37)

Moreover, from eq. (6.35) follows an useful rapid estimation of the scalar
power spectrum:

Ps ≃
1

QP

(
H

2π

)2

. (6.38)

We finally compare these results with the corresponding ones found in
the standard and metric cases. The scalar spectral index (6.37) is identi-
cal to the standard case arising from the Einstein-Hilbert action minimally
coupled to an inflaton field (4.120). It is however distinct from the Gen-
eralized Gravity case in metric formalism (5.43) in that the scalar spectral
index ns has no explicit dependence, at linear order, on ϵ3, or rather, on the
choice of the function f . This means that, as long as the scalar field ϕ plays
the same role as in the standard model of inflation, in Palatini Generalized
Gravity the observable ns, at first order in the slow-roll parameters, is phys-
ically indistinguishable from the canonical result (4.120). In particular we
learn that, in the Palatini formulation, any modified theory of gravity will
reproduce the experimental number (4.122), and thus, at least on the scalar
perturbation side, will be physically equivalent to the standard inflationary
model.

5Confront this definition with the standard one (4.110) and with the metric one (5.37)
after the condition ϵ3 = ϵ4 has been deployed.



Inflationary Perturbations in Modified Gravity: Palatini Formulation 91

Tensor Perturbations

Gravitational waves in Palatini Generalized Gravity obey the following am-
plitude equation

ḧ+

(
3H +

Ḟ

F

)
ḣ+

k2

a2
h = 0 . (6.39)

which is the same they obey in the metric formulation6. Consequently,
the analysis of inflationary tensor perturbations is identical for both the
approaches, so now we recall only the main results we found in section 5.3.

The tensor spectral index, at first order in the slow-roll parameters, is

nt ≃ −2ϵ1 − 2ϵ3 , (6.40)

while the tensor-to-scalar ratio is

r :=
Ps
Pt

≃ 8Qm
F

≃ 16 (ϵ1 + ϵ3) . (6.41)

Of course, also in the Palatini formulation the consistency relation (4.136)
is satisfied: r = −8nt. The tensor power spectrum can be estimated as

Pt ≃
8

F

(
H

2π

)2

. (6.42)

Because of this equivalence between Palatini and metric tensor perturba-
tions, all the results we are going to find in the next sections will be, at least
at first order, similar to the ones we derived in chapter 5.

6.4 Example 1: f(R) Theories

We first look at f(R) theories where the acceleration of the inflationary
expansion is driven solely by the f(R) modifications to the action. Sev-
eral indications suggest that Palatini f(R) gravity is not a viable model of
inflation because of many troubles in matching observations. As we now
see doing perturbation analysis, the theory completely miss our physical
universe.

Palatini f(R) inflationary models have been studied, for example, for R2

gravity [MW03, WM04], but the more promising attempts try to unify both
the early and late time accelerations introducing positive as well as negative
power corrections [Sot06a, Sot06b, FTT07]. Their (late time) perturbations
has been considered in [LCC07, DT10].

More recently, some works employ the Palatini formulation of f(R) grav-
ity to reproduce an early time bouncing cosmology in order to avoid the Big

6See previous section.
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Bang singularity7 [BOS09, BOS10, Olm10, BO10]. Perturbation analysis
for these models has been carried out in [Koi10].

The following result for inflationary perturbations in Palatini f(R) grav-
ity has been derived in [TC10].

In attempting to analyze inflationary cosmological perturbations in Pala-
tini f(R) gravity, an important constraint arises: whereas f(R) theories in
the metric formalism introduce an extra dynamical scalar degree of freedom,
the same theory in the Palatini approach introduces only a non-dynamical
scalar mode with an algebraic constraint. This is most clearly seen by re-
lating both cases to Brans-Dicke theories with an explicit scalar degree of
freedom exactly as we did in chapter 3. In the Palatini case the second-order
terms in the scalar cancel out exactly resulting in a non-dynamical scalar
mode, although this is not obvious when first inspecting the action.

This result is evident in our treatment in that the second-order term in
(6.26) is proportional to QP which is not defined in the absence of the scalar
mode ϕ. Indeed in this case the equation reduces to a first-order constraint(

3H +
3Ḟ

2F

)
Ṙ+

k2

a2
R = 0 . (6.43)

This shows that in the Palatini formulation of f(R) theories any initial cur-
vature perturbation decays during inflation and are not useful for seeding
the growth of structures8. Thus, Palatini inflation driven solely by f(R)
modifications cannot be considered as a viable model since it does not re-
produce the universe we live in. Physically, the roots of this lackness lie on
the fact that Palatini f(R) gravity does not introduce any degree of freedom
more than GR; mathematically, this happens since QP in (6.27) does not
present the modifying term appearing in Qm (5.29).

Finally, though usless because of the considerations above, we look at
tensor perturbations. In Palatini f(R) gravity the background equation
(6.10) reduces to

2FḢ − 3Ḟ 2

2F
−HḞ + F̈ = 0 , (6.44)

which, in terms of the slow-roll parameters, can be rewritten as

(ϵ1 + ϵ3)(1 + ϵ3) = 0 . (6.45)

At first order we get the constraint

ϵ1 + ϵ3 ≃ 0 , (6.46)

7Without violationg any energy conditions.
8Note that in eq. (6.43) the function F still depends on R̂. However, if we replace R̂

in favour of R with the aid of the trace of the field equations, no more gauge invariants
come out. Thus, eq. (6.43) will still be a first-order differential equation for R and all the
following considerations will remain.
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which sets to zero the tensor spectral index (6.40) and the tensor-to-scalar
ratio (6.41),

ns ≃ 0 and r ≃ 0 . (6.47)

This result is analogous to the one we found in metric f(R) gravity9, meaning
that, on the tensor perturbation side, the two formulations act identically.

6.5 Example 2: Scalar-Tensor Theories

The second example we propose is Scalar-Tensor gravity, which was intro-
duced in section 3.1. The Palatini formulation of Scalar-Tensor theories has
not been sistematically studied throughout the literature, so only sporadic
works can be found [Lin76, BM97, Igl07]. The most interesting model is
non-minimal inflation [BD08] which will be treated in the next section. For
the moment, we analyze Scalar-Tensor theories in general, showing how the
results derived in section 6.3 reduce.

In Palatini Scalar-Tensor gravity we have f(R̂, ϕ) = F (ϕ)R̂, while ω(ϕ)
and V (ϕ) are arbitrary functions of ϕ. The background equations (6.9) and
(6.10) becomes

6F

(
H2 +

Ḟ 2

4F 2
+
HḞ

2F

)
− FR̂ = 2ωϕ̇2 − 2V ; (6.48)

2FḢ − 3Ḟ 2

2F
−HḞ + F̈ = −ωϕ̇2 ; (6.49)

where now the function F depends only by the scalar field ϕ. Using the
relation Ḟ = F,ϕϕ̇, eq. (6.49) can be rewritten in terms of the slow-roll
parameters (6.29) as [TC10]

(ϵ1 + ϵ3)(1 + ϵ3) = ϵ23
2ωF

F 2
,ϕ

. (6.50)

At first order in the ϵ’s this leads to the following constraint

ϵ1 + ϵ3 ≃ 0 , (6.51)

which is nothing but the condition (5.80) we obtained in the metric case10.
The constraint (6.51) does not affect the scalar spectral index (6.37) since
it does not present any ϵ3 deviation

ns − 1 ≃ −4ϵ1 − 2ϵ2 . (6.52)

9Note however the difference between eqs. (6.45) and (5.61), which implies that at
second order the results are not the same.

10Although at first order this constraint is the same, note that at second order eq. (6.50)
differs from eq. (5.79). This means that the following coincidence between the metric and
Palatini results breaks up at the next order of approximation.
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The tensor spectral index (6.40) and tensor-to-scalar ratio (6.41) are instead,
once again, constrined to zero

ns ≃ 0 and r ≃ 0 . (6.53)

In conclusion, although the Palatini formulation of scalar-tensor theories
could drive inflation and produce nearly scale invariant scalar perturbations,
in agreement with observations, they will not produce any tensor modes.
This is a general features of Palatini Scalar-Tensor theories, which conse-
quently might have to be discarded as possible models for inflation if even
a small amount of tensor modes are observed by future CMB experiments.

6.6 Example 3: Non-Minimal Inflation

As an example of Scalar-Tensor gravity we analyse the case of non-minimally
coupled inflation [FU90, NS10, ORS10] which has been recently used as an
attempt to identify the inflaton field with the standard model Higgs boson
[BS08, BKS08]. The following analysis is taken from [TC10].

In non-minimal inflation we have

F (ϕ) = 1 + ξϕ2 , ω(ϕ) = 1 , V (ϕ) = λ
(
ϕ2 − v2

)2
, (6.54)

with ξ, λ, v parameters of the theory. The potential V (ϕ) should represent
the Higgs symmetry-breaking potential. Slow-roll inflation is obtained in
the region ξϕ2 ≫ v2, where the potential becomes V (ϕ) ≃ λϕ4. Using the
slow-roll conditions

ϕ̈≪ Hϕ̇ , ϕ̇≪ Hϕ , ϕ̇2 ≪ V , Ḣ ≪ H2 , (6.55)

from the background equations (6.9), (6.10) and (6.11) we derive the follow-
ing first-order relations

H2 ≃ λϕ4

3 (1 + ξϕ2)
; (6.56)

Hϕ̇ ≃ 4λϕ3

3

ξϕ2 − 1

ξϕ2 + 1
; (6.57)

Ḣ ≃ 4λξϕ4

3

ξϕ2 − 1

(ξϕ2 + 1)2
. (6.58)

Then, from the definitions (6.29), the slow-roll parameters become

ϵ1 ≃ −4ξ
ξϕ2 − 1

ξϕ2 + 1
; (6.59)
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ϵ2 ≃ 4ξ
(ξϕ2 + 3)(2ξϕ2 − 1)

ξϕ2(ξϕ2 + 1)
; (6.60)

ϵ3 ≃ 4ξ
ξϕ2 − 1

ξϕ2 + 1
. (6.61)

According to the general constraint obtained above for Scalar-Tensor the-
ories (6.51), we immediately note that ϵ1 is exactly the opposite of ϵ3. As
expected then the tensor spectral index and tensor-to-scalar ratio vanish at
first order. Using the relation (6.52) the scalar spectral index can be written
as

ns − 1 ≃ 8

ϕ2
3− 7ξϕ2

1 + ξϕ2
. (6.62)

In order to constrain ξ with this result we need a value for ϕ to substitute
in. This can be obtained from the minimum number of e-foldings N which
occurred during inflation,

N =

∫ ϕend

ϕstart

H

ϕ̇
dϕ =

∫ ϕend

ϕstart

H2

Hϕ̇
dϕ

≃ − 1

8ξ
log(1− ξϕ2start) , (6.63)

where ϕstart and ϕend (with ϕstart ≫ ϕend) are the values of the inflaton
field at the beginning and end of inflation respectively and we have used the
relations (6.56) and (6.57) in the last step.

Considering11 N ≃ 62 and an observed scalar spectral index of ns ≃ 0.96,
we obtain the following positive12 value for ξ of

ξ ≃ 2.9× 10−3 . (6.64)

The value is small, which means small deviation from minimal coupling
and agreement with the metric case result [NS10]. However, non-minimally
coupled inflationary models in the regime ξ ≫ 1 are also considered viable
[BS08] (see also [BD08] for the Palatini approach). The latter are indeed
the models which try to unify the inflaton field with the Higgs boson.

Finally, given the value for ξ and imposing the WMAP 5-year normal-
ization for the curvature perturbation power spectrum [WMAP09]

Ps ≃
(
H2

2πϕ̇

)2
∣∣∣∣∣∣
aH=k

≃ 2.4× 10−9 , (6.65)

we can also obtain a value for λ:

λ ≃ 2.5× 10−14 . (6.66)

11See (4.29) and (4.122).
12We could also obtain a negative value for ξ, but te corresponding value of λ would be

negative implying a potential unbounded from below.
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Again, we find an extremely small value for λ, which however seems to agree
with the metric case [NS10].

To conclude, the obtained results of ξ and λ tell us that non-minimally
coupled inflation in its Palatini formulation matches the few measured ex-
perimental data only for small deviations from minimal coupling and for
nearly flat potentials. Although it might be of interest from the particle
physics point of view, if only a small amount of primordial gravitational
waves was detected by forthcoming observations, the model would be dis-
carded because of its Scalar-Tensor nature.



Conclusion

We briefly summarize here the work presented in this thesis giving references
to the chapters and sections where the topics were studied in details. The
results for scalar and tensor spectral indices obtained throughout the text
for different gravitational theories are compared and discussed.

After the (rather long) introduction (Chapter 1), where we provided an
overview of modern cosmology, we studied the metric and Palatini varia-
tional principles (Chapter 2), which, for GR, are nothing but two different
formulations of the same theory. We then moved to analyze some theoreti-
cal modifications of GR using both metric and Palatini formalisms (Chapter
3). The gravitational theories presented were: Scalar-Tensor gravity, f(R)
gravity and Generalized Gravity. For all these theories we found that the
metric and Palatini approaches lead to physically different theories rather
than, as in GR, to two different formulations of the same theory.

After this, we started to focus on cosmology providing first a short review
on the standard model of inflation and the theory of cosmological perturba-
tions (Chapter 4). There we explained how a primordial inflationary phase
can solve some major cosmological problems and introduced the concept
of slow-roll inflation. Furthermore, we presented the general set up of cos-
mological perturbations discussing the gauge issue and deriving evolution
equations. We finally defined the scalar and spectral indices showing how
they, in the standard model of inflation, can be written to first order in the
slow-roll parameters.

The last two chapters are devoted to the main subject of this thesis.
We applied the theory of cosmological perturbations to metric (Chapter
5) and Palatini (Chapter 6) Generalized Gravity. We focused on the in-
flationary phase by deriving how scalar and tensor spectral indices read in
those theories. We made specific examples reducing the analysis to f(R) and
Scalar-Tensor gravity and provided some numbers to match with experimen-
tal data in two particular inflationary models: Starobinsky and non-minimal
inflations.

We can now compare the main results we found for different gravitational
theories. In the following table we summarize the scalar (ns) and tensor (nt)
spectral indices for all the inflationary models introduced:
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Theory ns − 1 nt

Standard Inflation −4ϵ1 − 2ϵ2 −2ϵ1
Metric f(R) Gravity −6ϵ1 − 2ϵ4 0

Metric Scalar-Tensor Gravity −6ϵ1 − 2ϵ2 − 2ϵ4 0

Palatini f(R) Gravity - 0

Palatini Scalar-Tensor Gravity −4ϵ1 − 2ϵ2 0

All the results are taken to first order in the slow-roll parameters (5.32).
For any of these theories, a part Palatini f(R) gravity, the consistency rela-
tion connecting the tensor spectral index to the tensor-to-scalar ratio holds:
r = −8nt. From the table above, it is easy to understand the theoretical
differences between these models marked by the observables ns and nt.

Let first focus on the scalar perturbation side. One immediately notes
that for Palatini f(R) gravity the scalar spectral index does not appear.
This is due to the fact that for this theory scalar perturbations cannot be
generated during the inflationary phase (Section 6.4). We thus cannot even
calculate ns since any primordial gravitational wave would rapidly decay
once inflation ended and consequently would not reach us today. In par-
ticular, all the late time structures of our universe would not shape since
the early time scalar perturbations cannot act as seeds for their growth.
For this reasons, the theory cannot be employed to build viable inflationary
models. Theoretically, this happens because in Palatini f(R) gravity we get
the same dynamical degrees of freedom than GR, meaning there are no fur-
ther scalar degrees of freedom to drive inflation. This last feature is clearer
recasting the theory in the form of a Brans-Dicke theory where the further
scalar degree of freedom should appear explicitly (Section 3.4).

Another great surprise comes from Palatini Scalar-Tensor gravity, where
the result for ns turns out to be identical to the canonical one (Section
6.5). This implies that, as long as the scalar field ϕ plays the same role of
the inflaton, the theory cannot be physically distinguished from standard
inflation measuring scalar perturbations only.

In the metric theories, the gravitational modification shows its effects
through the slow-roll parameter ϵ4 and, though of less importance, through
the numerical factor in front of ϵ1. In metric f(R) gravity the slow-roll
parameter ϵ2 vanishes because the scalar field ϕ is clearly absent (Section
5.4). However, its role in the scalar spectral index is now played by ϵ4,
meaning that inflation is directly driven by the modified gravitational part
of the action rather than by an external scalar field. In fact, contrary to the
Palatini case, metric f(R) gravity does present a scalar degree of freedom
more than GR (Section 3.3). In metric Scalar-Tensor gravity inflation is
instead driven by the scalar field ϕ as the appearence of ϵ2 in ns confirms
(Section 5.6). Here the role of ϵ4 is marginal and determines only small
corrections to the almost standard result given by ϵ1 and ϵ2.

To conclude the discussion on scalar perturbations, we find different ex-
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pressions for the scalar spectral index ns depending on the gravitational
theory considered. Anyway, all of them, except Palatini f(R) gravity, are
in some way similar, if not equal, each other. With a consinstent modifica-
tion of the gravitational action all these scalar spectral indices can indeed
reproduce the experimental number [WMAP09]

ns = 0.960± 0.013 ,

and thus be all empirically acceptable. This means that the scalar spec-
tral index ns cannot be used in order to distinguish between standard and
modified inflation. It becomes however an important tool if one is inter-
ested to discriminate between different inflationary models within the same
theoretical framework.

The tensor spectral index presents a completely different story. Looking
at the table above, we realize that any minimal modification to the stan-
dard gravitational action, regardless of the variational principle in use, sets
immediately the spectral index to zero. This first order result differs from
the one we find in standard inflation where nt is related to ϵ1. Although it
has not been measured yet, we can utilize an eventual observation of nt in
order to select which one between canonical and modified inflations really de-
scribe the early universe behaviour. If only a small amount of gravitational
wave modes will be detected, any inflationary model based on a modified
gravitational action would be experimentally ruled out. In numbers, the
expected value of r, which is always related to ns by r = −8ns, is of order
10−1 for standard inflation while is at least one hundred times smaller for
all the other models. At the moment we can only rely on an upper bound
of r < 0.22 [WMAP09] and wait for future CMB experiments, which will
hopefully permit us to know if modified gravitational theories represent a
viable theoretical way to describe an inflationary primordial epoch.
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